×

Restriction theorem for the Fourier-Dunkl transform. I: Cone surface. (English) Zbl 1505.42013

Summary: In this article, we define the Fourier-Dunkl transform, which generalizes the Fourier transform. We prove Strichartz’s restriction theorem for the Fourier-Dunkl transform for a cone-hyper-surface and its generalisation to the family of orthonormal functions. As an application of this restriction theorem, we derive the Strichartz inequality associated with the square root of Dunkl Laplacian for the family of orthonormal functions.

MSC:

42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
42B35 Function spaces arising in harmonic analysis
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis

References:

[1] Amri, B.; Hammi, A., Dunkl-Schrödinger Operators, Complex Anal. Oper. Theory, 13, 1033-1058 (2019) · Zbl 1480.47056 · doi:10.1007/s11785-018-0834-1
[2] Boggarapu, P.; Roncal, L.; Thangavelu, S., Mixed norm estimates for the Cesáro means associated with Dunkl-Hermite expansions, Trans. Am. Math. Soc., 369, 7021-7047 (2017) · Zbl 1405.42049 · doi:10.1090/tran/6861
[3] Dunkl, CF, Reflection groups and orthogonal polynomials on the sphere, Math. Z., 197, 33-60 (1988) · Zbl 0616.33005 · doi:10.1007/BF01161629
[4] Dunkl, CF, Differential-difference operators associated to reflection groups, Trans. Am. Math. Soc., 311, 167-183 (1989) · Zbl 0652.33004 · doi:10.1090/S0002-9947-1989-0951883-8
[5] Dunkl, CF, Integral kernels with reflection group invariance, Canad. J. Math., 43, 1213-1227 (1991) · Zbl 0827.33010 · doi:10.4153/CJM-1991-069-8
[6] Dunkl, C.F.: Hankel transforms associated to finite reflection groups. In: Proc. of the special session on hypergeometric functions on domains of positivity. Jack polynomials and applications, Proceedings, Tampa 1991, Contemp. Math. 138, pp 123-138 (1992) · Zbl 0789.33008
[7] Dunkl, CF; Xu, Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0964.33001
[8] Duoandikoetxea, J., Graduate studies in mathematics, Fourier Analysis (2001), Providence: American Mathematical Society, Providence · Zbl 0969.42001
[9] Frank, R.; Sabin, J., Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates, Am. J. Math., 139, 1649-1691 (2017) · Zbl 1388.42018 · doi:10.1353/ajm.2017.0041
[10] Gelfand, IM; Shilov, GE, Generalized Functions (1964), New York: Academic Press, New York · Zbl 0115.33101
[11] Ghobber, S.; Mejjaoli, H., Logarithm Sobolev and Shannon’s inequalities associ-ated with the deformed Fourier transform and applications, Symmetry, 14, 1311 (2022) · doi:10.3390/sym14071311
[12] Lapointe, L.; Vinet, L., Exact operator solution of the Calogero-Sutherland model, Commun. Math. Phys., 178, 425-452 (1996) · Zbl 0859.35103 · doi:10.1007/BF02099456
[13] Mejjaoli, H., Strichartz estimates for the Dunkl wave equation and application, J. Math. Anal. Appl., 346, 41-54 (2008) · Zbl 1149.35017 · doi:10.1016/j.jmaa.2008.05.004
[14] Mejjaoli, H., Generalized homogeneous Besov spaces and their applications, Serdica Math. J., 38, 4, 575-614 (2012) · Zbl 1324.46047
[15] Mejjaoli, H., Generalized Lorentz spaces and applications, J. Funct. Spaces Appl., 14 (2013) · Zbl 1296.46026
[16] Rösler, M.: Dunkl operators: theory and applications. Orthogonal Polynomials and special functions (Leuven, 2002), 93-135, Lecture Notes in Math., 1817, Springer, Berlin (2003) · Zbl 1029.43001
[17] Simon, B.: Trace ideals and their applications. London Math. Soc. Lecture Note Ser. 35, Cambridge Univ. Press, Cambridge, (1979) · Zbl 0423.47001
[18] Stein, E.M.: Oscillatry integrals in Fourier analysis. Beijing Lectures in harmonic analysis. Ann. of Math. Stud. 112, PP 307-355 Princeton Univ. Press (1986) · Zbl 0618.42006
[19] Strichartz, RS, Restrictions of Fourier transforms to quadratic surface and decay of solutions of wave equations, Duke Math. J., 44, 705-714 (1977) · Zbl 0372.35001 · doi:10.1215/S0012-7094-77-04430-1
[20] Tao, T.: Some recent progress on the restriction conjecture. In: Fourier Analysis and Convexity. Birkhäuser, Boston (2004) · Zbl 1083.42008
[21] Thangavelu, S., Xu, Y.: Convolution operator and maximal function for Dunkl transform. Dept. of Mathematics, IISc Bangalore, Technical report No. 2006/8, March 26 (2006) · Zbl 1131.43006
[22] Tomas, P., A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., 81, 477-478 (1975) · Zbl 0298.42011 · doi:10.1090/S0002-9904-1975-13790-6
[23] Trimèche, K., Paley-Wiener theorems for Dunkl transform and Dunkl translation operators, Integr. Transf. Special Funct., 13, 17-38 (2002) · Zbl 1030.44004 · doi:10.1080/10652460212888
[24] van Diejen, JF; Vinet, L., Calogero-Sutherland-Moser Models (2000), New York: Springer, New York · Zbl 0942.00063 · doi:10.1007/978-1-4612-1206-5
[25] Wong, MW, Wavelet Transforms and Localiation Operators (2002), Berlin: Springer, Berlin · Zbl 1016.42017 · doi:10.1007/978-3-0348-8217-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.