×

Uniformly strong convergence of Kähler-Ricci flows on a Fano manifold. (English) Zbl 1509.14087

This paper is concerned with the behaviour of the Kähler-Ricci flow on Fano manifolds. This is a parabolic flow designed to detect the existence of Kähler-Einstein metrics and Kähler-Ricci solitons on Fano manifolds, and starting from an initial Kähler metric \(\omega \in c_1(X)\) on \(X\), produces a family of Kähler metrics \[ \frac{d\omega(t)}{dt} = -\operatorname{Ric} \omega(t) + \omega(t), \] with \(\operatorname{Ric} \omega(t)\) the Ricci curvature and \(\omega(0)=\omega\). By the resolution of the Hamilton-Tian conjecture by X. Chen and B. Wang [J. Differ. Geom. 116, No. 1, 1–123 (2020; Zbl 1479.53103)], it is known that the Gromov-Hausdorff limit \((X_{\infty},\omega_{\infty})\) of \((X,\omega(t))\) is a \(\mathbb Q\)-Fano variety with \(\omega_{\infty}\) a Kähler-Ricci soliton.
This paper considers the uniqueness of \((X_{\infty},\omega_{\infty})\), namely how \((X_{\infty},\omega_{\infty})\) depends on the initial Kähler metric \(\omega \in c_1(X)\). The authors prove uniqueness under the following assumption: assuming that \(\operatorname{Aut}(X_{\infty})\) is reductive, any other Gromov-Hausdorff limit must equal \((X_{\infty},\omega_{\infty})\). In essence, the assumption that \(\operatorname{Aut}(X_{\infty})\) is reductive allows the authors to adapt techniques used to prove the analogous results for uniqueness of Kähler-Einstein degenerations (where reductivity is automatic). The proofs are interesting and quite technical.
The reader may be interested in recent work of J. Han and C. Li which uses much more algebro-geometric techniques to prove uniqueness in general [“Algebraic uniqueness of Kähler-Ricci flow limits and optimal degenerations of Fano varieties”, Preprint, arXiv:2009.01010].

MSC:

14J45 Fano varieties
53E20 Ricci flows
53C55 Global differential geometry of Hermitian and Kählerian manifolds
53E30 Flows related to complex manifolds (e.g., Kähler-Ricci flows, Chern-Ricci flows)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

Citations:

Zbl 1479.53103

References:

[1] Alper, J.; Blum, H.; Halpern-Leistner, D., Reductivity of the automorphism group of K-polystable Fano varieties, Invent Math, 222, 995-1032 (2020) · Zbl 1465.14043
[2] Bamler, R., Convergence of Ricci flows with bounded scalar curvature, Ann of Math (2), 188, 753-831 (2018) · Zbl 1410.53063
[3] Berman, R. J., K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics, Invent Math, 203, 973-1025 (2016) · Zbl 1353.14051
[4] Berman, R. J.; Boucksom, S.; Eyssidieux, P., Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J Reine Angew Math, 751, 27-89 (2019) · Zbl 1430.14083
[5] Berman R J, Witt Nyström D. Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons. arXiv:1401.8264, 2014
[6] Berndtsson, B., A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent Math, 200, 149-200 (2015) · Zbl 1318.53077
[7] Blum, H.; Xu, C. Y., Uniqueness of K-polystable degenerations of Fano varieties, Ann of Math (2), 190, 609-656 (2019) · Zbl 1427.14084
[8] Cao, H. D., Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent Math, 81, 359-372 (1985) · Zbl 0574.53042
[9] Cheeger, J.; Colding, T., On the structure of spaces with Ricci curvature bounded below. I, J Differential Geom, 46, 406-480 (1997) · Zbl 0902.53034
[10] Cheeger, J.; Colding, T.; Tian, G., On the singularities of spaces with bounded Ricci curvature, Geom Funct Anal, 12, 873-914 (2002) · Zbl 1030.53046
[11] Chen, X.; Sun, S., Calabi flow, Geodesic rays, and uniqueness of constant scalar curvature Kähler metrics, Ann of Math (2), 180, 407-454 (2014) · Zbl 1307.53058
[12] Chen, X.; Sun, S.; Wang, B., Kähler-Ricci flow, Kähler-Einstein metric, and K-stability, Geom Topol, 22, 3145-3173 (2018) · Zbl 1404.53058
[13] Chen, X.; Wang, B., Space of Ricci flows (II)—part B: Weak compactness of the flows, J Differential Geom, 116, 1-123 (2020) · Zbl 1479.53103
[14] Datar, D.; Székelyhidi, G., Kähler-Einstein metrics along the smooth continuity method, Geom Funct Anal, 26, 975-1010 (2016) · Zbl 1359.32019
[15] Delcroix, T., K-stability of Fano spherical varieties, Ann Sci Éc Norm Supér (4), 53, 615-662 (2020) · Zbl 1473.14098
[16] Dervan, R.; Székelyhidi, G., Kähler-Ricci flow and optimal degenerations, J Differential Geom, 116, 187-203 (2020) · Zbl 1447.53081
[17] Ding, W. Y.; Tian, G., Kähler-Einstein metrics and the generalized Futaki invariants, Invent Math, 110, 523-571 (1992) · Zbl 0779.53044
[18] Donaldson, S., Stability, birational transformations and the Kähler-Einstein problems, Surveys in Differential Geometry, 203-228 (2012), Somerville: International Press, Somerville · Zbl 1382.32018
[19] Donaldson, S.; Sun, S., Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math, 213, 63-106 (2014) · Zbl 1318.53037
[20] Donaldson, S.; Sun, S., Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II, J Differential Geom, 107, 327-371 (2017) · Zbl 1388.53074
[21] Eyssidieux, P.; Guedj, V.; Zeriahi, A., Singular Kähler-Einstein metrics, J Amer Math Soc, 22, 607-639 (2009) · Zbl 1215.32017
[22] Futaki, A., Kähler-Einstein Metrics and Integral Invariants (1988), Berlin: Springer-Verlag, Berlin · Zbl 0646.53045
[23] Han J, Li C. Algebraic uniqueness of Kähler-Ricci flow limits and optimal degenerations of Fano varieties. arXiv:2009.01010v1, 2020
[24] He, W., Kähler-Ricci soliton and H-functional, Asian J Math, 20, 645-664 (2016) · Zbl 1370.53047
[25] Jiang, W.; Wang, F.; Zhu, X. H., Bergman kernels for a sequence of almost Kähler-Ricci solitons, Ann Inst Fourier (Grenoble), 67, 1279-1320 (2017) · Zbl 1396.53074
[26] Kodaira, K., Complex Manifolds and Deformation of Complex Structures (1986), Berlin-Heidelberg: Springer-Verlag, Berlin-Heidelberg · Zbl 0581.32012
[27] Kolodziej, S., The complex Monge-Ampère equation, Acta Math, 180, 69-117 (1998) · Zbl 0913.35043
[28] Li, C., Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds, J Reine Angew Math, 733, 55-85 (2017) · Zbl 1388.53076
[29] Li, C.; Wang, X. W.; Xu, C. Y., Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds, Ann Sci Éc Norm Supér (4), 51, 739-772 (2018) · Zbl 1421.32033
[30] Li, C.; Wang, X. W.; Xu, C. Y., On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties, Duke Math J, 168, 1387-1459 (2019) · Zbl 1469.14087
[31] Liu G, Szekelyhidi G. Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below. Geom Funct Anal, 2022, in press · Zbl 1493.53097
[32] Matsushima, Y., Sur la structure du groupe d’homeo morphismes analytiques d’une certaine variété Kaehlérinne, Nagoya Math J, 11, 145-150 (1957) · Zbl 0091.34803
[33] Pasquier, B., On some smooth projective two-orbit varieties with Picard number 1, Math Ann, 344, 963-987 (2010) · Zbl 1173.14028
[34] Perelman G. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159, 2012 · Zbl 1130.53001
[35] Sesum, N.; Tian, G., Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman), J Inst Math Jussieu, 7, 575-587 (2008) · Zbl 1147.53056
[36] Spotti, C.; Sun, S., Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds, Pure Appl Math Q, 13, 477-515 (2017) · Zbl 1403.32013
[37] Sun, S.; Wang, Y. Q., On the Kähler-Ricci flow near a Kähler-Einstein metric, J Reine Angew Math, 699, 143-158 (2015) · Zbl 1314.53123
[38] Tian, G., On Calabi’s conjecture for complex surfaces, Invent Math, 101, 101-172 (1990) · Zbl 0716.32019
[39] Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent Math, 130, 1-37 (1997) · Zbl 0892.53027
[40] Tian, G., Existence of Einstein metrics on Fano manifolds, Metric and Differential Geometry, 119-159 (2012), Basel: Birkhaäuser, Basel · Zbl 1250.53044
[41] Tian, G., Partial C^0-estimates for Kähler-Einstein metrics, Commun Math Stat, 1, 105-113 (2013) · Zbl 1280.32014
[42] Tian, G., K-stability and Kähler-Einstein metrics, Comm Pure Appl Math, 68, 1085-1156 (2015) · Zbl 1318.14038
[43] Tian, G.; Wang, F., On the existence of conic Kähler-Einstein metrics, Adv Math, 375, 107413 (2020) · Zbl 1457.53052
[44] Tian G, Zhang L, Zhu X H. Kähler-Ricci flow for deformed complex structures. arXiv:2107.12680, 2021
[45] Tian, G.; Zhang, S. J.; Zhang, Z. L., Perelman’s entropy and Kähler-Ricci flow on a Fano manifold, Trans Amer Math Soc, 365, 6669-6695 (2013) · Zbl 1298.53037
[46] Tian, G.; Zhang, Z. L., Regularity of Kähler-Ricci flows on Fano manifolds, Acta Math, 216, 127-176 (2016) · Zbl 1356.53067
[47] Tian, G.; Zhu, X. H., Uniqueness of Kähler-Ricci solitons, Acta Math, 184, 271-305 (2000) · Zbl 1036.53052
[48] Tian, G.; Zhu, X. H., A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comment Math Helv, 77, 297-325 (2002) · Zbl 1036.53053
[49] Tian, G.; Zhu, X. H., Convergence of the Kähler-Ricci flow, J Amer Math Soc, 17, 675-699 (2009) · Zbl 1185.53078
[50] Tian, G.; Zhu, X. H., Convergence of the Kähler-Ricci flow on Fano manifolds, J Reine Angew Math, 678, 223-245 (2013) · Zbl 1276.14061
[51] Wang, F.; Zhou, B.; Zhu, X. H., Modified Futaki invariant and equivariant Riemann-Roch formula, Adv Math, 289, 1205-1235 (2016) · Zbl 1342.14106
[52] Wang, F.; Zhu, X. H., Tian’s partial C^0-estimate implies Hamilton-Tian’s conjecture, Adv Math, 381, 107619 (2021) · Zbl 1479.53105
[53] Wang, Y. Q., On the Kähler-Ricci flows near the Mukai-Umemura 3-fold, Int Math Res Not IMRN, 7, 2145-2156 (2016) · Zbl 1404.53087
[54] Xiong, M. K., Kähler-Ricci solitons and generalized Tian-Zhu’s invariant, Internat J Math, 25, 1450068 (2014) · Zbl 1297.53052
[55] Zhang K. Some refinements of the partial C^0 estimate. arXiv:1911.11328, 2019
[56] Zhang, Q., A uniform Sobolev inequality under Ricci flow, Int Math Res Not IMRN, 2007, rn-056 (2007) · Zbl 1141.53064
[57] Zhang, Q., Bounds on volume growth of geodesic balls under Ricci flow, Math Res Lett, 19, 245-253 (2012) · Zbl 1272.53056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.