×

A large data theory for nonlinear wave on the Schwarzschild background. (English) Zbl 1507.83052

Summary: We study both of the scattering and Cauchy problems for the semilinear wave equation with a null quadratic form on the Schwarzschild background. Prescribing the scattering data that are given by the short pulse data on the future null infinity and are trivial on the future event horizon, we construct a class of global solutions backwards up to any finite time and show that the wave travels in such a way that almost all of the (large) energy is focusing in an outgoing null strip, while little radiates out of this strip. In reverse, considering a class of Cauchy data with large energy norms, there exists a unique and global solution in the future development, and the radiation field along the future null infinity exists. Furthermore, most of the wave packet is confined in an incoming null strip and reflected to the future event horizon, whereas little is transmitted to the future null infinity.

MSC:

83C57 Black holes
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35L05 Wave equation
15A63 Quadratic and bilinear forms, inner products
81U05 \(2\)-body potential quantum scattering theory
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
83C15 Exact solutions to problems in general relativity and gravitational theory
83C10 Equations of motion in general relativity and gravitational theory

References:

[1] An, X.; Luk, J., Trapped surfaces in vacuum arising dynamically from mild incoming radiation, Adv. Theor. Math. Phys., 21, 1-120 (2017) · Zbl 1367.83001
[2] Andersson, L.; Bäckdahl, T.; Blue, P.; Ma, S., Stability for linearized gravity on the Kerr spacetime (2019)
[3] Andersson, L.; Blue, P., Hidden symmetries and decay for the wave equation on the Kerr space-time, Ann. Math. (2), 182, 787-853 (2015) · Zbl 1373.35307
[4] Andersson, L.; Blue, P.; Wang, J., Morawetz estimate for linearized gravity in Schwarzschild, Ann. Henri Poincaré, 21, 761-813 (2020) · Zbl 1437.83052
[5] Blue, P.; Soffer, A., Semilinear wave equations on the Schwarzschild manifold I: local decay estimates, Adv. Differ. Equ., 8, 595-614 (2003) · Zbl 1044.58033
[6] Blue, P.; Sterbenz, J., Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space, Commun. Math. Phys., 268, 2, 481-504 (2006) · Zbl 1123.58018
[7] Christodoulou, D., Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math., 39, 267-282 (1986) · Zbl 0612.35090
[8] Christodoulou, D., The Formation of Black Holes in General Relativity, Monographs in Mathematics (2009), European Mathematical Soc.: European Mathematical Soc. Zürich · Zbl 1197.83004
[9] Christodoulou, D.; Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41 (1993), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0733.35105
[10] Dafermos, M.; Holzegel, G.; Rodnianski, I., A scattering theory construction of dynamical vacuum black holes (2013)
[11] Dafermos, M.; Holzegel, G.; Rodnianski, I., The linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math., 222, 1-214 (2019) · Zbl 1419.83023
[12] Dafermos, M.; Rodnianski, I., Small amplitude nonlinear waves on a black hole background, J. Math. Pures Appl., 84, 1147-1172 (2005) · Zbl 1079.35069
[13] Dafermos, M.; Rodnianski, I., The red-shift effect and radiation decay on black hole spacetimes, Commun. Pure Appl. Math., 62, 859-919 (2009) · Zbl 1169.83008
[14] Dafermos, M.; Rodnianski, I., A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, Invent. Math., 185, 3, 467-559 (2011) · Zbl 1226.83029
[15] Dafermos, M.; Rodnianski, I., Lectures on Black Holes and Linear Waves, in Evolution Equations, Clay Mathematics Proceedings, vol. 17, 97-205 (2013), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1300.83004
[16] Dafermos, M.; Rodnianski, I.; Shlapentokh-Rothman, Y., Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case \(| a | < M\), Ann. Math. (2), 183, 3, 787-913 (2016) · Zbl 1347.83002
[17] Dafermos, M.; Rodnianski, I.; Shlapentokh-Rothman, Y., A scattering theory for the wave equation on Kerr black hole exteriors, Ann. Sci. Éc. Norm. Supér. (4), 51, 371-486 (2018) · Zbl 1508.83015
[18] Dimock, J., Scattering for the wave equation on the Schwarzschild metric, Gen. Relativ. Gravit., 17, 353-369 (1985) · Zbl 0618.35088
[19] Donninger, R.; Schlag, W.; Soffer, A., On pointwise decay of linear waves on a Schwarzschild black hole background, Commun. Math. Phys., 309, 51-86 (2012) · Zbl 1242.83054
[20] Finster, F.; Kamran, N.; Smoller, F.; Yau, S. T., Decay of solutions of the wave equation in the Kerr geometry, Commun. Math. Phys., 264, 465-503 (2006) · Zbl 1194.83015
[21] Finster, F.; Kamran, N.; Smoller, F.; Yau, S. T., Erratum: “Decay of solutions of the wave equation in the Kerr geometry”, Commun. Math. Phys., 280, 563-573 (2008) · Zbl 1194.83014
[22] Friedlander, F. G., Radiation fields and hyperbolic scattering theory, Math. Proc. Camb. Philos. Soc., 88, 483-515 (1980) · Zbl 0465.35068
[23] Friedlander, F. G., Notes on the wave equation on asymptotically Euclidean manifolds, J. Funct. Anal., 184, 1-18 (2001) · Zbl 0997.58013
[24] Hartle, J. B.; Wilkins, D. C., Analytic properties of the Teukolsky equation, Commun. Math. Phys., 38, 47-63 (1974)
[25] Hung, P.; Keller, J.; Wang, M., Linear stability of Schwarzschild spacetime: the Cauchy problem of metric coefficients (2017)
[26] John, F., Blow-up for quasilinear wave equations in three space dimensions, Commun. Pure Appl. Math., 34, 29-51 (1981) · Zbl 0453.35060
[27] Klainerman, S., Global existence for nonlinear wave equations, Commun. Pure Appl. Math., 33, 43-101 (1980) · Zbl 0405.35056
[28] Klainerman, S., Uniform decay estimates and the Lorentz invariance of the classical wave equation, Commun. Pure Appl. Math., 38, 321-332 (1985) · Zbl 0635.35059
[29] Klainerman, S.; Rodnianski, I., On the formation of trapped surfaces, Acta Math., 208, 211-333 (2012) · Zbl 1246.83028
[30] Lindblad, H., On the asymptotic behavior of solutions to the Einstein vacuum equations in wave coordinates, Commun. Math. Phys., 353, 135-184 (2017) · Zbl 1373.35308
[31] Lindblad, H.; Metcalfe, J.; Sogge, C. D.; Tohaneanu, M.; Wang, C., The Strauss conjecture on Kerr black hole backgrounds, Math. Ann., 359, 637-661 (2014) · Zbl 1295.35327
[32] Lindblad, H.; Rodnianski, I., Global existence for the Einstein vacuum equations in wave coordinates, Commun. Math. Phys., 266, 43-100 (2005) · Zbl 1081.83003
[33] Lindblad, H.; Rodnianski, I., The global stability of Minkowski space-time in harmonic gauge, Ann. Math. (2), 171, 1401-1477 (2010) · Zbl 1192.53066
[34] Lindblad, H.; Tohaneanu, M., Global existence for quasilinear wave equations close to Schwarzschild, Commun. Partial Differ. Equ., 43, 893-944 (2018) · Zbl 1411.35209
[35] Lindblad, H.; Schlue, V., Scattering from infinity for semilinear models of Einstein’s equations satisfying the weak null condition (2017)
[36] Luk, J., Improved decay for solutions to the linear wave equation on a Schwarzschild black hole, Ann. Henri Poincaré, 11, 805-880 (2010) · Zbl 1208.83068
[37] Luk, J., A vector field method approach to improved decay for solutions to the wave equation on a slowly rotating Kerr black hole, Anal. PDE, 5, 553-625 (2012) · Zbl 1267.83065
[38] Luk, J., The null condition and global existence for nonlinear wave equations on slowly rotating Kerr spacetimes, J. Eur. Math. Soc., 15, 1629-1700 (2013) · Zbl 1280.35154
[39] Luli, G. K., \( C^{m , \omega}\) extension by bounded-depth linear operators, Adv. Math., 224, 1927-2021 (2010) · Zbl 1195.47005
[40] Ma, S., Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity, Commun. Math. Phys., 377, 2489-2551 (2020) · Zbl 1443.83036
[41] Marzuola, J.; Metcalfe, J.; Tataru, D.; Tohaneanu, M., Strichartz estimates on Schwarzschild black hole backgrounds, Commun. Math. Phys., 293, 37-83 (2010) · Zbl 1202.35327
[42] Marzuola, J.; Metcalfe, J.; Tataru, D.; Tohaneanu, M., Strichartz estimates on Schwarzschild black hole backgrounds, Commun. Math. Phys., 293, 37-83 (2010) · Zbl 1202.35327
[43] Metcalfe, J.; Nakamura, M.; Sogge, C. D., Global existence of solutions to multiple speed systems of quasilinear wave equations in exterior domains, Forum Math., 17, 133-168 (2005) · Zbl 1149.35055
[44] Metcalfe, J.; Sogge, C. D., Global existence of null-form wave equations in exterior domains, Math. Z., 256, 521-549 (2007) · Zbl 1138.35065
[45] Metcalfe, J.; Tataru, D., Decay estimates for variable coefficient wave equations in exterior domains, (Advances in Phase Space Analysis of Partial Differential Equations. Advances in Phase Space Analysis of Partial Differential Equations, Progr. Nonlinear Differential Equations Appl., vol. 78 (2009), Birkhäuser: Birkhäuser Boston), 201-216 · Zbl 1201.35047
[46] Miao, S.; Pei, L.; Yu, P., On classical global solutions of nonlinear wave equations with large data, Int. Math. Res. Not., 19, 5859-5913 (2019) · Zbl 1479.35571
[47] Nicolas, J. P., Nonlinear Klein-Gordon equation on Schwarzschild-like metrics, J. Math. Pures Appl., 74, 35-58 (1995) · Zbl 0853.35123
[48] Nicolas, J. P., A nonlinear Klein-Gordon equation on Kerr metrics, J. Math. Pures Appl., 81, 885-914 (2002) · Zbl 1029.83029
[49] Nicolas, J. P., Conformal scattering on the Schwarzschild metric, Ann. Inst. Fourier (Grenoble), 66, 1175-1216 (2016) · Zbl 1373.35050
[50] Press, W. H.; Teukolsky, S. A., Perturbations of a rotating black hole II, Astrophys. J., 185, 649-673 (1973)
[51] Regge, T.; Wheeler, John A., Stability of a Schwarzschild singularity, Phys. Rev., 108, 1063-1069 (1957) · Zbl 0079.41902
[52] Rendall, A. D., Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations, Proc. R. Soc. Lond. Ser. A, 427, 221-239 (1990) · Zbl 0701.35149
[53] Sideris, T. C., The null condition and global existence of nonlinear elastic waves, Invent. Math., 123, 323-342 (1996) · Zbl 0844.73016
[54] Sideris, T. C.; Tu, S. Y., Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal., 33, 477-488 (2001) · Zbl 1002.35091
[55] Tataru, D., Local decay of waves on asymptotically flat stationary space-times, Am. J. Math., 135, 361-401 (2013) · Zbl 1266.83033
[56] Tataru, D.; Tohaneanu, M., A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not., 2, 248-292 (2011) · Zbl 1209.83028
[57] Tohaneanu, M., Strichartz estimates on Kerr black hole back grounds, Trans. Am. Math. Soc., 364, 689-702 (2012) · Zbl 1234.35275
[58] Wang, F., Radiation field for einstein vacuum equations with spacial dimension \(n \geq 4 (2013)\)
[59] Wang, J.; Wei, C., Global existence of smooth solution to relativistic membrane equation with large data, Calc. Var., 61, 55 (2022) · Zbl 1484.35290
[60] Wang, J.; Yu, P., Long time solutions for wave maps with large data, J. Hyperbolic Differ. Equ., 10, 371-414 (2013) · Zbl 1275.35006
[61] Wang, J.; Yu, P., A large data regime for nonlinear wave equations, J. Eur. Math. Soc., 18, 575-622 (2016) · Zbl 1378.35202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.