×

Infinite GMRES for parameterized linear systems. (English) Zbl 1508.65027

Summary: We consider linear parameterized systems \(A(\mu)x(\mu)=b\) for many different \(\mu\), where \(A\) is large and sparse and depends nonlinearly on \(\mu\). Solving such systems individually for each \(\mu\) would require great computational effort. In this work we propose to compute a partial parameterization \(\tilde{x}\approx x(\mu)\), where \(\tilde{x}(\mu)\) is cheap to evaluate for many \(\mu\). Our methods are based on the observation that a companion linearization can be formed where the dependence on \(\mu\) is only linear. In particular, methods are presented that combine the well-established Krylov subspace method for linear systems, GMRES, with algorithms for nonlinear eigenvalue problems (NEPs) to generate a basis for the Krylov subspace. Within this new approach, the basis matrix is constructed in three different ways, using a tensor structure and exploiting that certain problems have low-rank properties. The methods are analyzed analogously to the standard convergence theory for the method GMRES for linear systems. More specifically, the error is estimated based on the magnitude of the parameter \(\mu\) and the spectrum of the linear companion matrix, which corresponds to the reciprocal solutions to the corresponding NEP. Numerical experiments illustrate the competitiveness of the methods for large-scale problems. The simulations are reproducible and publicly available online.

MSC:

65F10 Iterative numerical methods for linear systems
65F50 Computational methods for sparse matrices

Software:

GitHub; Julia; FEniCS

References:

[1] K. Ahuja, E. de Sturler, S. Gugercin, and E. R. Chang, Recycling BiCG with an application to model reduction, SIAM J. Sci. Comput., 34 (2012), pp. A1925-A1949. · Zbl 1253.65040
[2] M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, The FEniCS project version 1.5, Arch. Numer. Softw., 3 (2015), pp. 9-23.
[3] A. Antoulas, C. Beattie, and S. Gugercin, Interpolatory Methods for Model Reduction, SIAM, Philadelphia, 2020. · Zbl 1319.93016
[4] D. Appelö, T. Hagstrom, and G. Kreiss, Perfectly matched layers for hyperbolic systems: General formulation, well-posedness, and stability, SIAM J. Appl. Math., 67 (2006), pp. 1-23. · Zbl 1110.35042
[5] T. Bakhos, P. K. Kitanidis, S. Ladenheim, A. K. Saibaba, and D. B. Szyld, Multipreconditioned GMRES for shifted systems, SIAM J. Sci. Comput., (2017), pp. S222-S247. · Zbl 1392.65043
[6] M. Baumann and M. B. van Gijzen, Nested Krylov methods for shifted linear systems, SIAM J. Sci. Comput., 37 (2015), pp. S90-S112. · Zbl 06502306
[7] A. Bayliss, C. Goldstein, and E. Turkel, An iterative method for the Helmholtz equation, J. Comput. Phys., 49 (1983), pp. 443-457. · Zbl 0524.65068
[8] C. Beattie and S. Gugercin, Interpolatory projection methods for structure-preserving model reduction, Syst. Control Lett., 58 (2009), pp. 225-232. · Zbl 1159.93317
[9] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. Silveira, eds., Model Order Reduction. Volume 3: Applications, De Gruyter, Berlin, 2021. · Zbl 1480.93046
[10] P. W. Benner and J. A. Schneider, Uncertainty quantification for Maxwell’s equations using stochastic collocation and model order reduction, Int. J. Uncertain. Quant., 5 (2015), pp. 195-208. · Zbl 1498.78026
[11] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), pp. 185-200. · Zbl 0814.65129
[12] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65-98, https://doi.org/10.1137/141000671. · Zbl 1356.68030
[13] E. de Sturler, S. Gugercin, M. E. Kilmer, S. Chaturantabut, C. Beattie, and M. O’Connell, Nonlinear parametric inversion using interpolatory model reduction, SIAM J. Sci. Comput., 37 (2015), pp. B495-B517. · Zbl 1433.65194
[14] H. Elman, O. Ernst, and D. O’Leary, A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations, SIAM J. Sci. Comput., 23 (2001), pp. 1291-1315. · Zbl 1004.65134
[15] Y. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equation, Arch. Comput. Methods Eng., 15 (2008), pp. 37-66. · Zbl 1158.65078
[16] Y. Erlangga, C. Vuik, and C. Oosterlee, On a class of preconditioners for solving the Helmholtz equation, Appl. Numer. Math., 50 (2004), pp. 409-425. · Zbl 1051.65101
[17] D. Estep, P. Hansbo, C. Johnson, and K. Eriksson, Computational Differential Equations, Cambridge University Press, Cambridge, UK, 2009. · Zbl 0946.65049
[18] L. Feng, P. Benner, and J. G. Korvink, Subspace recycling accelerates the parametric macro-modeling of MEMS, Internat. J. Numer. Methods Engrg., 94 (2013), pp. 84-110. · Zbl 1352.74479
[19] R. W. Freund, Solution of shifted linear systems by quasi-minimal residual iterations, in Numerical Linear Algebra, De Gruyter, Berlin, 1993, pp. 101-122 https://doi.org/10.1515/9783110857658.101. · Zbl 0794.65028
[20] A. Frommer and U. Glässner, Restarted GMRES for shifted linear systems, SIAM J. Sci. Comput., 19 (1998), pp. 15-26, https://doi.org/10.1137/S1064827596304563. · Zbl 0912.65023
[21] A. Frommer and P. Maass, Fast CG-based methods for Tikhonov-Phillips regularization, SIAM J. Sci. Comput., 20 (1999), pp. 1831-1850, https://doi.org/10.1137/S1064827596313310. · Zbl 0943.65068
[22] G.-D. Gu and V. Simoncini, Numerical solution of parameter-dependent linear systems, Numer. Linear Algebra Appl., 12 (2005), pp. 923-940, https://doi.org/10.1002/nla.442. · Zbl 1164.65345
[23] K. Gu, V. Kharitonov, and J. Chen, Stability of Time-Delay Systems, Control Eng., Birkhäuser, Boston, 2003. · Zbl 1039.34067
[24] T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), pp. 47-106, https://doi.org/10.1017/S0962492900002890. · Zbl 0940.65108
[25] E. Jarlebring, K. Meerbergen, and W. Michiels, A Krylov method for the delay eigenvalue problem, SIAM J. Sci. Comput., 32 (2010), pp. 3278-3300. · Zbl 1226.65069
[26] E. Jarlebring, K. Meerbergen, and W. Michiels, Computing a partial Schur factorization of nonlinear eigenvalue problems using the infinite Arnoldi method, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 411-436. · Zbl 1319.65040
[27] E. Jarlebring, K. Meerbergen, and W. Michiels, An Arnoldi method with structured starting vectors for the delay eigenvalue problem, IFAC Proc. Vol., 43 (2010), pp. 57-62.
[28] E. Jarlebring, G. Mele, and O. Runborg, The waveguide eigenvalue problem and the tensor infinite Arnoldi method, SIAM J. Sci. Comput., 39 (2017), pp. A1062-A1088. · Zbl 1366.65104
[29] E. Jarlebring, W. Michiels, and K. Meerbergen, A linear eigenvalue algorithm for the nonlinear eigenvalue problem, Numer. Math., 122 (2012), pp. 169-195. · Zbl 1256.65043
[30] M. E. Kilmer and D. P. O’Leary, Choosing regularization parameters in iterative methods for ill-posed problems, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1204-1221. · Zbl 0983.65056
[31] M. E. Kilmer and E. Sturler, Recycling subspace information for diffuse optical tomography, SIAM J. Sci. Comput., 27 (2006), pp. 2140-2166. · Zbl 1103.65036
[32] D. Kressner and J. Roman, Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis, Numer. Linear Algebra Appl., 21 (2014), pp. 569-588. · Zbl 1340.65059
[33] D. Kressner and C. Tobler, Low-rank tensor Krylov subspace methods for parametrized linear systems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1288-1316, https://doi.org/10.1137/100799010. · Zbl 1237.65034
[34] S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971-1004. · Zbl 1132.65027
[35] H. G. Matthies, A. Litvinenko, O. Pajonk, B. V. Rosić, and E. Zander, Parametric and Uncertainty Computations with Tensor Product Representations, in Uncertainty Quantification in Scientific Computing, A. Dienstfrey and R. Boisvert, eds., IFIP Adv. Inf. Commun. Technol. 377, Springer, Berlin, 2012, pp. 139-150, https://doi.org/, 10.1007/978-3-642-32677-6. · Zbl 1256.65004
[36] G. Mele and E. Jarlebring, On restarting the tensor infinite Arnoldi method, BIT, 58 (2018), pp. 133-162, https://doi.org/10.1007/s10543-017-0671-z. · Zbl 1386.65132
[37] G. Mele, E. Ringh, D. Ek, F. Izzo, P. Upadhyaya, and E. Jarlebring, Preconditioning for Linear Systems, 1st ed., Kindle Direct Publishing, Seattle, WA, 2020, http://preconditioning.se.
[38] W. Michiels, E. Jarlebring, and K. Meerbergen, Krylov-based model order reduction of time-delay systems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1399-1421. · Zbl 1247.65086
[39] W. Michiels and S.-I. Niculescu, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach, Adv. Des. Control 12, SIAM, Philadelphia, 2007. · Zbl 1140.93026
[40] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti, Recycling Krylov subspaces for sequences of linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 1651-1674. · Zbl 1123.65022
[41] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003. · Zbl 1031.65046
[42] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869. · Zbl 0599.65018
[43] K. M. Soodhalter, Two recursive GMRES-type methods for shifted linear systems with general preconditioning, Electron. Trans. Numer. Anal., 45 (2016), pp. 499-523. · Zbl 1355.65055
[44] K. M. Soodhalter, D. B. Szyld, and F. Xue, Krylov subspace recycling for sequences of shifted linear systems, Appl. Numer. Math., 81 (2014), pp. 105-118, https://doi.org/10.1016/j.apnum.2014.02.006. · Zbl 1291.65108
[45] Z. Strakoš and J. Liesen, Krylov Subspace Methods: Principles and Analysis, Oxford University Press, Oxford, 2012. · Zbl 1263.65034
[46] R. Van Beeumen, E. Jarlebring, and W. Michiels, A rank-exploiting infinite Arnoldi algorithm for nonlinear eigenvalue problems, Numer. Linear Algebra Appl., 23 (2016), pp. 607-628, https://doi.org/10.1002/nla.2043. · Zbl 1413.65105
[47] R. Van Beeumen, K. Meerbergen, and W. Michiels, Compact rational Krylov methods for nonlinear eigenvalue problems, SIAM J. Sci. Comput., 36 (2015), pp. 820-838. · Zbl 1319.65042
[48] S. Correnty and E. Jarlebring, InfGMRES, 2021, https://github.com/siobhanie/InfGMRES.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.