×

Anisotropic and crystalline mean curvature flow of mean-convex sets. (English) Zbl 1498.53113

Summary: We consider a variational scheme for the anisotropic and crystalline mean curvature flow of sets with strictly positive anisotropic mean curvature. We show that such condition is preserved by the scheme, and we prove the strict convergence in \(BV\) of the time-integrated perimeters of the approximating evolutions, extending a recent result of De Philippis and Laux to the anisotropic setting. We also prove uniqueness of the “flat flow” obtained in the limit.

MSC:

53E10 Flows related to mean curvature
49Q20 Variational problems in a geometric measure-theoretic setting
58E12 Variational problems concerning minimal surfaces (problems in two independent variables)
35A15 Variational methods applied to PDEs
74E10 Anisotropy in solid mechanics

References:

[1] L. ALMEIDA, A. CHAMBOLLE and M. NOVAGA, Mean curvature flow with obstacles, Ann. Inst. H. Poincaré Anal. Non Lin��aire 29 (2012), 667-681. · Zbl 1252.49072
[2] F. ALMGREN, J. E. TAYLOR and L. WANG, Curvature-driven flows: a variational ap-proach, SIAM J. Control Optim. 31 (1993), 387-438. · Zbl 0783.35002
[3] L. AMBROSIO, N. FUSCO and D. PALLARA, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. · Zbl 0957.49001
[4] G. ANZELLOTTI, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 (1983), 293-318. · Zbl 0572.46023
[5] G. ANZELLOTTI and M. GIAQUINTA, BV functions and traces, Rend. Semin. Mat. Univ. Padova 60 (1978), 1-21. · Zbl 0432.46031
[6] G. BELLETTINI, V. CASELLES, A. CHAMBOLLE and M. NOVAGA, Crystalline mean cur-vature flow of convex sets, Arch. Ration. Mech. Anal. 179 (2006), 109-152. · Zbl 1148.53049
[7] D. G. CARABALLO, Flat -curvature flow of convex sets, Taiwanese J. Math. 16 (2012), 1-12. · Zbl 1241.53055
[8] V. CASELLES and A. CHAMBOLLE, Anisotropic curvature-driven flow of convex sets, Non-linear Anal. 65 (2006), 1547-1577. · Zbl 1107.35069
[9] V. CASELLES, G. FACCIOLO and E. MEINHARDT, Anisotropic Cheeger sets and applica-tions, SIAM J. Imaging Sci. 2 (2009), 1211-1254. · Zbl 1193.49051
[10] A. CHAMBOLLE, M. MORINI, M. NOVAGA and M. PONSIGLIONE, Existence and unique-ness for anisotropic and crystalline mean curvature flows, J. Amer. Math. Soc. 32 (2019), 779-824. · Zbl 1420.53073
[11] A. CHAMBOLLE, M. MORINI, M. NOVAGA and M. PONSIGLIONE, Generalized crys-talline evolutions as limits of flows with smooth anisotropies, Anal. PDE 12 (2019), 789-813. · Zbl 1403.53055
[12] A. CHAMBOLLE, M. MORINI and M. PONSIGLIONE, Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math. 70 (2017), 1084-1114. · Zbl 1366.53047
[13] G. DE PHILIPPIS and T. LAUX, Implicit time discretization for the mean curvature flow of mean convex sets, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 911-930. · Zbl 1471.53073
[14] M.-H. GIGA and Y. GIGA, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal. 159 (2001), 295-333. · Zbl 1004.35075
[15] D. W. HOFFMAN and J. W. CAHN, A vector thermodynamics for anisotropic surfaces: I. fundamentals and application to plane surface junctions, Surface Science 31 (1972), 368-388.
[16] S. LUCKHAUS and T. STURZENHECKER, Implicit time discretization for the mean curva-ture flow equation, Calc. Var. Partial Differential Equations 3 (1995), 253-271. · Zbl 0821.35003
[17] A. LUNARDI, “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Mod-ern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1995, [2013 reprint of the 1995 original]. · Zbl 0816.35001
[18] F. MAGGI, “Sets of Finite Perimeter and Geometric Variational Problems”, Cambridge Studies in Advanced Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2012, An introduction to geometric measure theory. · Zbl 1255.49074
[19] J. METZGER and F. SCHULZE, No mass drop for mean curvature flow of mean convex hypersurfaces, Duke Math. J. 142 (2008), 283-312. · Zbl 1136.53051
[20] C. SCHEVEN and T. SCHMIDT, BV supersolutions to equations of 1-Laplace and minimal surface type, J. Differential Equations 261 (2016), 1904-1932. · Zbl 1341.35057
[21] R. SCHOEN, L. SIMON and F. J. ALMGREN JR., Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II, Acta Math. 139 (1977), 217-265. · Zbl 0386.49030
[22] L. SIMON, On some extensions of Bernstein’s theorem, Math. Z. 154 (1977), 265-273. · Zbl 0388.49026
[23] W. P. ZIEMER, “Weakly Differentiable Functions”, Graduate Texts in Mathematics, · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.