×

The circular maximal operator on Heisenberg radial functions. (English) Zbl 1496.42022

Denote by \(\mathbb{H}^n\) the Heisenberg group, the set \(\mathbb{R}\times\mathbb{R}^{2n}\) equipped with the following non-commutative group operation: for all \((u,x), (v,y)\in\mathbb{H}^n\), \[ (u,x)\cdot (v,y):=(u+v+x^TBy,x+y). \] Here, \(B:=\begin{pmatrix}0&-bI_n\\ bI_n&0\end{pmatrix}\) for some \(b\neq 0\) (one typically choose \(b=1/2\)). For \(\mu_1\equiv\mu\), the normalized surface measure on \(\{0\}\times\mathbb{S}^{2n-1}\), let \(\mu_t\) denote its dilation supported on \(t\mathbb{S}^{2n-1}\). For a function \(f:\mathbb{H}^n\rightarrow\mathbb{C}\), one may formally define its spherical means as \[ f\ast\mu_t(u,x):=\int_{\mathbb{S}^{2n-1}}\!f(u-tx^TBy,x-ty)\,d\mu(y) \] and its spherical maximal function as \[ Mf(u,x):=\sup_{t>0}|f\ast\mu_t(u,x)|. \] In this paper, the authors complement known \(L^p\)-boundedness results for \(M\) on \(\mathbb{H}^n\), \(n\geq{2}\), by initiating the study of the case \(n=1\), where currently nothing is known for any \(p<\infty\). For \(2<p\leq\infty\), they show the existence of a constant \(C_p\), depending only on \(p\), such that \[ \|Mf\|_{L^p(\mathbb{H}^1)}\leq C_p\|f\|_{L^p(\mathbb{H}^1)} \] for all \(\mathbb{H}\)-radial functions \(f\) on \(\mathbb{H}^1\). A function \(f:\mathbb{H}^1\rightarrow\mathbb{C}\) is said to be \(\mathbb{H}\)-radial if \(f(u,Rx)=f(u,x)\) for all \((u,x)\in\mathbb{H}^1\) and all \(R\) belonging to the special orthogonal group, \(SO(2)\). Equivalently, \(f\) is \(\mathbb{H}\)-radial if and only if there exists some function \(f_0:\mathbb{R}\times[0,\infty)\rightarrow\mathbb{C}\) such that \(f(u,x)=f_0(u,|x|)\) for all \((u,x)\in\mathbb{H}^1\).
The authors accomplish this by reducing the problem to studying the boundedness of a maximal function given by \(\sup_{t>0} |A_tf|\), where \(\{A_t\}\) are non-convolution averaging operators on \(\mathbb{R}^2\). While the reduction is not difficult, the associated curve distribution has vanishing rotational and cinematic curvatures, precluding the straightforward application of the standard techniques used to study the Euclidean spherical maximal function. A significant portion of this paper is spent overcoming these challenges, along the way performing an \(L^2\) analysis of two-parameter oscillatory integrals with two-sided fold singularities.
The appendices contain, among other things, a discussion of the use of repeated integration by parts often seen when studying oscillatory integrals.

MSC:

42B25 Maximal functions, Littlewood-Paley theory
22E25 Nilpotent and solvable Lie groups
43A80 Analysis on other specific Lie groups
35S30 Fourier integral operators applied to PDEs

References:

[1] T. C. ANDERSON, L. CLADEK, M. PRAMANIK and A. SEEGER, Spherical means on the Heisenberg group: stability of a maximal function estimate, J. Anal. Math. 145 (2021), 1-28. · Zbl 1493.43005
[2] S. BAGCHI, S. HAIT, L. RONCAL and S. THANGAVELU, On the maximal function associ-ated to the spherical means on the Heisenberg group, Dedicated to the memory of Eli Stein, New York J. Math. 27 (2021), 631-675. · Zbl 1486.43007
[3] D. BELTRAN, J. HICKMAN and C. D. SOGGE, Variable coefficient Wolff-type inequali-ties and sharp local smoothing estimates for wave equations on manifolds, Anal. PDE 13 (2020), 403-433. · Zbl 1436.35340
[4] D. BELTRAN, J. HICKMAN and C. D. SOGGE, Sharp local smoothing estimates for Fourier integral operators, In: “Geometric Aspects of Harmonic Analysis”, Springer INdAM Series, Vol. 45, 2021, 29-105. · Zbl 1494.42013
[5] J. BOURGAIN, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69-85. · Zbl 0626.42012
[6] A.-P. CALDERÓN and R. VAILLANCOURT, On the boundedness of pseudo-differential op-erators, J. Math. Soc. Japan 23 (1971), 374-378. · Zbl 0203.45903
[7] M. CHRIST, Hilbert transforms along curves I. Nilpotent groups, Ann. of Math. (2) 122 (1985), 575-596. · Zbl 0593.43011
[8] S. CUCCAGNA, L 2 estimates for averaging operators along curves with two-sided k-fold singularities, Duke Math. J. 89 (1997), 203-216. · Zbl 0908.47050
[9] J. J. DUISTERMAAT, “Fourier Integral Operators”, Modern Birkhäuser Classics, Birk-häuser Springer, New York, 2011, reprint of the 1996 edition, based on the original lecture notes published in 1973. · Zbl 0272.47028
[10] C. GAO, C. MIAO and J.-U. YANG, Improved variable coefficient square functions and local smoothing of Fourier integral operators, preprint: arXiv:1901.01487.
[11] A. GREENLEAF and A. SEEGER, On oscillatory integral operators with folding canonical relations, Studia Math. 132 (1999), 125-139. · Zbl 0922.35194
[12] L. HÖRMANDER, Fourier integral operators I, Acta Math. 127 (1971), 79-183. · Zbl 0212.46601
[13] L. HÖRMANDER, Oscillatory integrals and multipliers on FL p , Ark. Mat. 11 (1973), 1-11. · Zbl 0254.42010
[14] L. HÖRMANDER, “The Analysis of Linear Partial Differential Operators I -Distribution Theory and Fourier Analysis”, Classics in Mathematics, Springer-Verlag, Berlin, 2003, reprint of the second edition, 1990. · Zbl 0712.35001
[15] J. KIM, Annulus maximal averages on variable hyperplanes, preprint: arXiv:1906.03797.
[16] D. T. S. KUNG, Local smoothing phenomena for operators failing the cinematic curva-ture condition, ProQuest LLC, Ann. Arbor, MI, 2000, Thesis (Ph.D.), The University of Wisconsin, Madison.
[17] D. T. S. KUNG, Local smoothing for operators failing the cinematic curvature condition, J. Math. Anal. Appl. 324 (2006), 460-471. · Zbl 1140.42305
[18] R. B. MELROSE and M. E. TAYLOR, Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle, Adv. Math. 55 (1985), 242-315. · Zbl 0591.58034
[19] G. MOCKENHAUPT, A. SEEGER and C. D. SOGGE, Wave front sets, local smoothing and Bourgain’s circular maximal theorem, Ann. of Math. (2) 136 (1992), 207-218. · Zbl 0759.42016
[20] G. MOCKENHAUPT, A. SEEGER and C. D. SOGGE, Local smoothing of Fourier integral operators and Carleson-Sjölin estimates, J. Amer. Math. Soc. 6 (1993), 65-130. · Zbl 0776.58037
[21] D. MÜLLER and A. SEEGER, Singular spherical maximal operators on a class of two step nilpotent Lie groups, Israel J. Math. 141 (2004), 315-340. · Zbl 1054.22007
[22] E. K. NARAYANAN and S. THANGAVELU, An optimal theorem for the spherical maximal operator on the Heisenberg group, Israel J. Math. 144 (2004), 211-219. · Zbl 1062.43016
[23] A. NEVO and S. THANGAVELU, Pointwise ergodic theorems for radial averages on the Heisenberg group, Adv. Math. 127 (1997), 307-334. · Zbl 0888.22002
[24] Y. PAN and C. D. SOGGE, Oscillatory integrals associated to folding canonical relations, Colloq. Math. 60/61 (1990), 413-419. · Zbl 0746.58076
[25] D. H. PHONG and E. M. STEIN, Radon transforms and torsion, Int. Math. Res. Not. IMRN 1991, 49-60. · Zbl 0761.46033
[26] M. PRAMANIK and A. SEEGER, L p regularity of averages over curves and bounds for associated maximal operators, Amer. J. Math. 129 (2007), 61-103. · Zbl 1161.42009
[27] M. PRAMANIK and A. SEEGER, L p -Sobolev estimates for a class of integral operators with folding canonical relations, J. Geom. Anal. 31 (2021), 6725-6765. · Zbl 1482.44005
[28] W. SCHLAG, A geometric proof of the circular maximal theorem, Duke Math. J. 93 (1998), 505-533. · Zbl 0942.42010
[29] W. SCHLAG and C. D. SOGGE, Local smoothing estimates related to the circular maximal theorem, Math. Res. Lett. 4 (1997), 1-15. · Zbl 0877.42006
[30] C. D. SOGGE, Propagation of singularities and maximal functions in the plane, Invent. Math. 104 (1991), 349-376. · Zbl 0754.35004
[31] E. M. STEIN, Maximal functions I -Spherical means, Proc. Natl. Acad. Sci. USA 73 (1976), 2174-2175. · Zbl 0332.42018
[32] E. M. STEIN, “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals”, Princeton Mathematical Series, Vol. 43, Princeton University Press, Princeton, NJ, 1993, with the assistance of Timothy S. Murphy, Monographs, In: “Harmonic Analysis, III”. Department of Mathematics University of Wisconsin 480 Lincoln Drive Madison, WI 53706, USA dbeltran@math.wisc.edu shaomingguo@math.wisc.edu seeger@math.wisc.edu School of Mathematics James Clerk Maxwell Building The King’s Buildings Peter Guthrie Tait Road Edinburgh, EH9 3FD, UK jonathan.hickman@ed.ac.uk · Zbl 0821.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.