×

Four symmetries of the KdV equation. (English) Zbl 1492.35284

Summary: We revisit the symmetry structure of integrable PDEs, looking at the specific example of the KdV equation. We identify four nonlocal symmetries of KdV depending on a parameter, which we call generating symmetries. We explain that since these are nonlocal symmetries, their commutator algebra is not uniquely determined, and we present three possibilities for the algebra. In the first version, three of the four symmetries commute; this shows that it is possible to add further (nonlocal) commuting flows to the standard KdV hierarchy. The second version of the commutator algebra is consistent with Laurent expansions of the symmetries, giving rise to an infinite-dimensional algebra of hidden symmetries of KdV. The third version is consistent with asymptotic expansions for large values of the parameter, giving rise to the standard commuting symmetries of KdV, the infinite hierarchy of “additional symmetries,” and their traditionally accepted commutator algebra (though this also suffers from some ambiguity as the additional symmetries are nonlocal). We explain how the three symmetries that commute in the first version of the algebra can all be regarded as infinitesimal double Bäcklund transformations. The four generating symmetries incorporate all known symmetries of the KdV equation, but also exhibit some remarkable novel structure, arising from their nonlocality. We believe this structure to be shared by other integrable PDEs.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
17B80 Applications of Lie algebras and superalgebras to integrable systems
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics

References:

[1] Adler, M.; Shiota, T.; van Moerbeke, P., A Lax representation for the vertex operator and the central extension, Comm. Math. Phys., 171, 3, 547-588 (1995) · Zbl 0839.35116 · doi:10.1007/BF02104678
[2] Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of symmetry methods to partial differential equations. Applied Mathematical Sciences, vol. 168. Springer, New York (2010) · Zbl 1223.35001
[3] Bluman, G.W., Kumei, S.: Symmetries and differential equations. Applied Mathematical Sciences, vol. 81. Springer-Verlag, New York (1989) · Zbl 0698.35001
[4] Bluman, G.; Cheviakov, AF, Framework for potential systems and nonlocal symmetries: algorithmic approach, J. Math. Phys., 46, 12 (2005) · Zbl 1111.35002 · doi:10.1063/1.2142834
[5] Bluman, G.; Cheviakov, AF; Ivanova, NM, Framework for nonlocally related partial differential equation systems and nonlocal symmetries: extension, simplification, and examples, J. Math. Phys., 47, 11 (2006) · Zbl 1112.35010 · doi:10.1063/1.2349488
[6] Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khor’kova, N.G., Krasil’shchik, I.S., Samokhin, A.V., Torkhov, Y.N., Verbovetsky, A.M., and Vinogradov, A.M. :Symmetries and conservation laws for differential equations of mathematical physics, vol. 182 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1999. Edited and with a preface by Krasil’shchik and Vinogradov, Translated from the 1997 Russian original by Verbovetsky [A. M. Verbovetskiĭ] and Krasil’shchik
[7] Cheviakov, AF; Bluman, GW, Multidimensional partial differential equation systems: nonlocal symmetries, nonlocal conservation laws, exact solutions, J. Math. Phys., 51, 10, 103522 (2010) · Zbl 1314.35020 · doi:10.1063/1.3496383
[8] Dickey, L.A.: Soliton equations and Hamiltonian systems, second ed., vol. 26 of Advanced Series in Mathematical Physics. World Scientific Publishing Co. Inc., River Edge, NJ, (2003) · Zbl 1140.35012
[9] Dickey, LA, On additional symmetries of the KP hierarchy and Sato’s Bäcklund transformation, Comm. Math. Phys., 167, 1, 227-233 (1995) · Zbl 0813.35106 · doi:10.1007/BF02099358
[10] Fuchssteiner, B., Mastersymmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations, Progr. Theor. Phys., 70, 6, 1508-1522 (1983) · Zbl 1098.37536 · doi:10.1143/PTP.70.1508
[11] Galas, F., New nonlocal symmetries with pseudopotentials, J. Phys. A, 25, 15, L981-L986 (1992) · Zbl 0754.35136 · doi:10.1088/0305-4470/25/15/014
[12] Gardner, CS, Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a Hamiltonian system, J. Math. Phys., 12, 1548-1551 (1971) · Zbl 0283.35021 · doi:10.1063/1.1665772
[13] Guthrie, GA, More nonlocal symmetries of the KdV equation, J. Phys. A, 26, 18, L905-L908 (1993) · Zbl 0809.35106 · doi:10.1088/0305-4470/26/18/004
[14] Guthrie, GA; Hickman, MS, Nonlocal symmetries of the KdV equation, J. Math. Phys., 34, 1, 193-205 (1993) · Zbl 0767.35078 · doi:10.1063/1.530374
[15] Hairer, E., Lubich, C., and Wanner, G.: Geometric numerical integration, vol. 31 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2010. Structure-preserving algorithms for ordinary differential equations, Reprint of the second (2006) edition · Zbl 1094.65125
[16] Ibragimov, N.H., Šabat, A.B.: The Korteweg-de Vries equation from the group standpoint. Dokl. Akad. Nauk SSSR 244 (1), 57-61 (1979)
[17] Khor’kova, N. G.: Conservation laws and nonlocal symmetries. Mat. Zametki 44 1(157), 134-144 (1988) · Zbl 0656.58038
[18] Krasil’shchik, IS; Vinogradov, AM, Nonlocal symmetries and the theory of coverings: an addendum to Vinogradov’s “Local symmetries and conservation laws”, Acta Appl. Math., 2, 1, 79-96 (1984) · Zbl 0547.58043 · doi:10.1007/BF01405492
[19] Kumei, S., Invariance transformations, invariance group transformations, and invariance groups of the sine-Gordon equations, J. Math. Phys., 16, 12, 2461-2468 (1975) · doi:10.1063/1.522487
[20] Lou, SY, Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations, J. Math. Phys., 35, 5, 2390-2396 (1994) · Zbl 0807.35127 · doi:10.1063/1.530509
[21] Lou, SY; Hu, X.; Chen, Y., Nonlocal symmetries related to Bäcklund transformation and their applications, J. Phys. A, 45, 15, 155209 (2012) · Zbl 1248.37069 · doi:10.1088/1751-8113/45/15/155209
[22] Oevel, W.; Carillo, S., Squared eigenfunction symmetries for soliton equations. II, J. Math. Anal. Appl., 217, 1, 179-199 (1998) · Zbl 0896.35118 · doi:10.1006/jmaa.1997.5708
[23] Oevel, G.; Fuchssteiner, B.; Błaszak, M., Action-angle representation of multisolitons by potentials of mastersymmetries, Progr. Theoret. Phys., 83, 3, 395-413 (1990) · Zbl 1058.37527 · doi:10.1143/PTP.83.395
[24] Olver, P.J. :Nonlocal symmetries and ghosts. In New trends in integrability and partial solvability, vol. 132 of NATO Sci. Ser. II Math. Phys. Chem. Kluwer Acad. Publ., Dordrecht, 2004, pp. 199-215 · Zbl 1072.35193
[25] Olver, PJ, Evolution equations possessing infinitely many symmetries, J. Math. Phys., 18, 6, 1212-1215 (1977) · Zbl 0348.35024 · doi:10.1063/1.523393
[26] Olver, PJ, Applications of Lie groups to Differential Equations (1993), New York: Springer-Verlag, New York · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[27] Olver, PJ; Sanders, JA; Wang, JP, Ghost symmetries, J. Nonlinear Math. Phys., 9, 1, 164-172 (2002) · doi:10.2991/jnmp.2002.9.s1.14
[28] Orlov, AY; Schulman, EI, Additional symmetries for integrable equations and conformal algebra representation, Lett. Math. Phys., 12, 3, 171-179 (1986) · Zbl 0618.35107 · doi:10.1007/BF00416506
[29] Ovsiannikov, L.V.: Group analysis of differential equations. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. Translated from the Russian by Y. Chapovsky, Translation edited by William F. Ames · Zbl 0485.58002
[30] Praught, J., and Smirnov, R.G. Andrew Lenard: a mystery unraveled. SIGMA Symmetry Integrability Geom. Methods Appl. 1 (2005), Paper 005, 7 · Zbl 1128.37045
[31] Rasin, A.G.: Computation of generating symmetries, (2022)
[32] Rasin, AG; Schiff, J., The Gardner method for symmetries, J. Phys. A, 46, 15 (2013) · Zbl 1275.37033 · doi:10.1088/1751-8113/46/15/155202
[33] Segal, G.; Wilson, G., Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math., 61, 5-65 (1985) · Zbl 0592.35112 · doi:10.1007/BF02698802
[34] ’t Hooft, G.: Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 14, 3432-3450 (1976)
[35] Tao, T.: Why are solitons stable? Bull. Am. Math. Soc. (N.S.) 46, 1 (2009), 1-33 · Zbl 1155.35082
[36] Zubelli, JP; Magri, F., Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV, Comm. Math. Phys., 141, 2, 329-351 (1991) · Zbl 0743.35072 · doi:10.1007/BF02101509
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.