×

Spreading equilibria under mildly singular potentials: pancakes versus droplets. (English) Zbl 1503.35158

Summary: We study global minimizers of a functional modeling the free energy of thin liquid layers over a solid substrate under the combined effect of surface, gravitational, and intermolecular potentials. When the latter ones have a mild repulsive singularity at short ranges, global minimizers are compactly supported and display a microscopic contact angle of \(\pi /2\). Depending on the form of the potential, the macroscopic shape can either be droplet-like or pancake-like, with a transition profile between the two at zero spreading coefficient for purely repulsive potentials. These results generalize, complete, and give mathematical rigor to de Gennes’ formal discussion of spreading equilibria. Uniqueness and non-uniqueness phenomena are also discussed.

MSC:

35Q35 PDEs in connection with fluid mechanics
34C60 Qualitative investigation and simulation of ordinary differential equation models
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
49J05 Existence theories for free problems in one independent variable
49J10 Existence theories for free problems in two or more independent variables
76A20 Thin fluid films
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D08 Lubrication theory
35R35 Free boundary problems for PDEs
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Alt, HW; Caffarelli, LA, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325, 105-144 (1981) · Zbl 0449.35105
[2] Alt, HW; Phillips, D., A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math., 368, 63-107 (1986) · Zbl 0598.35132
[3] Ansini, L.; Giacomelli, L., Shear-thinning liquid films: macroscopic and asymptotic behaviour by quasi-self-similar solutions, Nonlinearity, 15, 6, 2147-2164 (2002) · Zbl 1023.35014 · doi:10.1088/0951-7715/15/6/318
[4] Becker, J.; Grün, G.; Seemann, R.; Mantz, H.; Jacobs, K.; Mecke, K.; Blossey, R., Complex dewetting scenarios captured by thin-film models, Nat. Mater., 2, 1, 59-63 (2003) · doi:10.1038/nmat788
[5] Beretta, E.; Bertsch, M.; Dal Passo, R., Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal., 129, 2, 175-200 (1995) · Zbl 0827.35065 · doi:10.1007/BF00379920
[6] Bernis, F., Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differ. Equ., 1, 3, 337-368 (1996) · Zbl 0846.35058
[7] Bernis, F., Finite speed of propagation for thin viscous flows when \(2\le n<3\), C. R. Acad. Sci. Paris Sér. I Math., 322, 12, 1169-1174 (1996) · Zbl 0853.76018
[8] Bernis, F.; Friedman, A., Higher order nonlinear degenerate parabolic equations, J. Differ. Equ., 83, 1, 179-206 (1990) · Zbl 0702.35143 · doi:10.1016/0022-0396(90)90074-Y
[9] Bertozzi, AL; Grün, G.; Witelski, TP, Dewetting films: bifurcations and concentrations, Nonlinearity, 14, 6, 1569-1592 (2001) · Zbl 1006.35049 · doi:10.1088/0951-7715/14/6/309
[10] Bertozzi, AL; Pugh, M., The lubrication approximation for thin viscous films: the moving contact line with a “porous media” cut-off of van der Waals interactions, Nonlinearity, 7, 6, 1535-1564 (1994) · Zbl 0811.35045 · doi:10.1088/0951-7715/7/6/002
[11] Bertozzi, AL; Pugh, M., The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Commun. Pure Appl. Math., 49, 2, 85-123 (1996) · Zbl 0863.76017 · doi:10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2
[12] Bertsch, M.; Dal Passo, R.; Davis, SH; Giacomelli, L., Effective and microscopic contact angles in thin film dynamics, Eur. J. Appl. Math., 11, 2, 181-201 (2000) · Zbl 0965.35125 · doi:10.1017/S0956792599004015
[13] Bertsch, M.; Dal Passo, R.; Garcke, H.; Grün, G., The thin viscous flow equation in higher space dimensions, Adv. Differ. Equ., 3, 3, 417-440 (1998) · Zbl 0954.35035
[14] Bertsch, M.; Giacomelli, L.; Karali, G., Thin-film equations with “partial wetting” energy: existence of weak solutions, Phys. D, 209, 1-4, 17-27 (2005) · Zbl 1079.76011 · doi:10.1016/j.physd.2005.06.012
[15] Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J., Wetting and spreading, Rev. Mod. Phys., 81, 2, 739-805 (2009) · doi:10.1103/RevModPhys.81.739
[16] Burchard, A.; Chugunova, M.; Stephens, BK, Convergence to equilibrium for a thin-film equation on a cylindrical surface, Commun. Partial Differ. Equ., 37, 4, 585-609 (2012) · Zbl 1248.35093 · doi:10.1080/03605302.2011.648704
[17] Carlen, EA; Loss, M., Sharp constant in Nash’s inequality, Int. Math. Res. Not., 7, 213-215 (1993) · Zbl 0822.35018 · doi:10.1155/S1073792893000224
[18] Casado-Díaz, J.; Murat, F., Semilinear problems with right-hand sides singular at \(u=0\) which change sign, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38, 3, 877-909 (2021) · Zbl 1466.35111 · doi:10.1016/j.anihpc.2020.09.001
[19] Chen, X.; Jiang, H., Singular limit of an energy minimizer arising from dewetting thin film model with van der Waal, Born repulsion and surface tension forces, Calc. Var. Partial Differ. Equ., 44, 1-2, 221-246 (2012) · Zbl 1244.35036 · doi:10.1007/s00526-011-0432-9
[20] Chen, X.; Jiang, H.; Liu, G., Boundary spike of the singular limit of an energy minimizing problem, Discrete Contin. Dyn. Syst., 40, 6, 3253-3290 (2020) · Zbl 1437.35210 · doi:10.3934/dcds.2020124
[21] Cheung, K-L; Chou, K-S, On the stability of single and multiple droplets for equations of thin film type, Nonlinearity, 23, 12, 3003-3028 (2010) · Zbl 1206.35205 · doi:10.1088/0951-7715/23/12/002
[22] Cheung, K-L; Chou, K-S, Energy stability of droplets and dry spots in a thin film model of hanging drops, Z. Angew. Math. Phys., 68, 5, 104, 21 (2017) · Zbl 1386.76019 · doi:10.1007/s00033-017-0852-2
[23] Chiricotto, M.; Giacomelli, L., Scaling laws for droplets spreading under contact-line friction, Commun. Math. Sci., 11, 2, 361-383 (2013) · Zbl 1310.35037 · doi:10.4310/CMS.2013.v11.n2.a2
[24] Chiricotto, M.; Giacomelli, L., Weak solutions to thin-film equations with contact-line friction, Interfaces Free Bound., 19, 2, 243-271 (2017) · Zbl 1516.35548 · doi:10.4171/IFB/382
[25] Chou, K-S; Zhang, Z., A mountain pass scenario and heteroclinic orbits for thin-film type equations, Nonlinearity, 25, 12, 3343-3388 (2012) · Zbl 1263.35180 · doi:10.1088/0951-7715/25/12/3343
[26] Cox, R., The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid Mech., 168, 169-194 (1986) · Zbl 0597.76102 · doi:10.1017/S0022112086000332
[27] Crandall, MG; Rabinowitz, PH; Tartar, L., On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differ. Equ., 2, 2, 193-222 (1977) · Zbl 0362.35031 · doi:10.1080/03605307708820029
[28] Dal Passo, R.; Garcke, H.; Grün, G., On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29, 2, 321-342 (1998) · Zbl 0929.35061 · doi:10.1137/S0036141096306170
[29] Dal Passo, R.; Giacomelli, L.; Grün, G., A waiting time phenomenon for thin film equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30, 2, 437-463 (2001) · Zbl 1024.35051
[30] Dal Passo, R.; Giacomelli, L.; Shishkov, A., The thin film equation with nonlinear diffusion, Commun. Partial Differ. Equ., 26, 9-10, 1509-1557 (2001) · Zbl 1001.35070
[31] de Gennes, PG, Wetting: statics and dynamics, Rev. Mod. Phys., 57, 3-1, 827-863 (1985) · doi:10.1103/RevModPhys.57.827
[32] De Silva, D., Savin, O.: The Alt-Phillips functional for negative powers. Preprint arXiv:2203.07123v1 (2022)
[33] De Silva, D., Savin, O.: Uniform density estimates and \(\Gamma \)-convergence for the Alt-Phillips functional of negative powers. Preprint arXiv:2205.08436v1 (2022)
[34] Delgadino, MG; Mellet, A., On the relationship between the thin film equation and Tanner’s law, Commun. Pure Appl. Math., 74, 3, 507-543 (2021) · Zbl 1466.76007 · doi:10.1002/cpa.21946
[35] Durastanti, R., Giacomelli, L.: Thin-film equations with mildly singular potentials: an alternative solution to the contact-line paradox. Preprint arXiv:2207.00700v1 (2022)
[36] Durastanti, R.; Oliva, F., Comparison principle for elliptic equations with mixed singular nonlinearities, Potential Anal, 57, 83-100 (2022) · Zbl 1491.35161 · doi:10.1007/s11118-021-09906-3
[37] Dussan V., E.; Davis, S., On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech., 65, 1, 71-95 (1974) · Zbl 0282.76004 · doi:10.1017/S0022112074001261
[38] Eggers, J.; Stone, H., Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle, J. Fluid Mech., 505, 309-321 (2004) · Zbl 1065.76065 · doi:10.1017/S0022112004008663
[39] Feldman, WM; Kim, IC, Liquid drops on a rough surface, Commun. Pure Appl. Math., 71, 12, 2429-2499 (2018) · Zbl 1418.76027 · doi:10.1002/cpa.21793
[40] Ferone, A.; Volpicelli, R., Convex rearrangement: equality cases in the Pólya-Szegö inequality, Calc. Var. Partial Differ. Equ., 21, 3, 259-272 (2004) · Zbl 1116.49022 · doi:10.1007/s00526-003-0256-3
[41] Finn, R., Equilibrium Capillary Surfaces. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (1986), New York: Springer-Verlag, New York · Zbl 0583.35002
[42] Fischer, J., Upper bounds on waiting times for the thin-film equation: the case of weak slippage, Arch. Ration. Mech. Anal., 211, 3, 771-818 (2014) · Zbl 1293.35241 · doi:10.1007/s00205-013-0690-0
[43] Fischer, J., Behaviour of free boundaries in thin-film flow: the regime of strong slippage and the regime of very weak slippage, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 5, 1301-1327 (2016) · Zbl 1349.35293 · doi:10.1016/j.anihpc.2015.05.001
[44] Flitton, JC; King, JR, Surface-tension-driven dewetting of Newtonian and power-law fluids, J. Eng. Math., 50, 2-3, 241-266 (2004) · Zbl 1073.76003 · doi:10.1007/s10665-004-3688-7
[45] Giacomelli, L.; Gnann, MV; Knüpfer, H.; Otto, F., Well-posedness for the Navier-slip thin-film equation in the case of complete wetting, J. Differ. Equ., 257, 1, 15-81 (2014) · Zbl 1302.35218 · doi:10.1016/j.jde.2014.03.010
[46] Giacomelli, L.; Gnann, MV; Otto, F., Rigorous asymptotics of traveling-wave solutions to the thin-film equation and Tanner’s law, Nonlinearity, 29, 9, 2497-2536 (2016) · Zbl 1345.35074 · doi:10.1088/0951-7715/29/9/2497
[47] Giacomelli, L.; Grün, G., Lower bounds on waiting times for degenerate parabolic equations and systems, Interfaces Free Bound., 8, 1, 111-129 (2006) · Zbl 1100.35058 · doi:10.4171/IFB/137
[48] Giacomelli, L.; Knüpfer, H.; Otto, F., Smooth zero-contact-angle solutions to a thin-film equation around the steady state, J. Differ. Equ., 245, 6, 1454-1506 (2008) · Zbl 1159.35039 · doi:10.1016/j.jde.2008.06.005
[49] Giacomelli, L.; Otto, F., Variational formulation for the lubrication approximation of the Hele-Shaw flow, Calc. Var. Partial Differ. Equ., 13, 3, 377-403 (2001) · Zbl 1086.35004 · doi:10.1007/s005260000077
[50] Giacomelli, L.; Otto, F., Droplet spreading: intermediate scaling law by PDE methods, Commun. Pure Appl. Math., 55, 2, 217-254 (2002) · Zbl 1021.76014 · doi:10.1002/cpa.10017
[51] Giacomelli, L.; Otto, F., Rigorous lubrication approximation, Interfaces Free Bound., 5, 4, 483-529 (2003) · Zbl 1039.76012 · doi:10.4171/IFB/88
[52] Giacomoni, J.; Saoudi, K., Multiplicity of positive solutions for a singular and critical problem, Nonlinear Anal., 71, 9, 4060-4077 (2009) · Zbl 1175.35066 · doi:10.1016/j.na.2009.02.087
[53] Gilbarg, D.; Trudinger, NS, Elliptic Partial Differential Equations of Second Order (2001), Berlin: Springer-Verlag, Berlin · Zbl 1042.35002 · doi:10.1007/978-3-642-61798-0
[54] Glasner, K.; Otto, F.; Rump, T.; Slepčev, D., Ostwald ripening of droplets: the role of migration, Eur. J. Appl. Math., 20, 1, 1-67 (2009) · Zbl 1155.76057 · doi:10.1017/S0956792508007559
[55] Glasner, K.; Witelski, T., Coarsening dynamics of dewetting films, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 67, 1-2, 163021-1630212 (2003)
[56] Gnann, MV, Well-posedness and self-similar asymptotics for a thin-film equation, SIAM J. Math. Anal., 47, 4, 2868-2902 (2015) · Zbl 1320.35132 · doi:10.1137/14099190X
[57] Gnann, MV, On the regularity for the Navier-slip thin-film equation in the perfect wetting regime, Arch. Ration. Mech. Anal., 222, 3, 1285-1337 (2016) · Zbl 1348.35187 · doi:10.1007/s00205-016-1022-y
[58] Gnann, MV; Petrache, M., The Navier-slip thin-film equation for 3D fluid films: existence and uniqueness, J. Differ. Equ., 265, 11, 5832-5958 (2018) · Zbl 1401.35354 · doi:10.1016/j.jde.2018.07.015
[59] Godoy, T.; Guerin, A., Existence of nonnegative solutions to singular elliptic problems, a variational approach, Discrete Contin. Dyn. Syst., 38, 3, 1505-1525 (2018) · Zbl 1401.35110 · doi:10.3934/dcds.2018062
[60] Grün, G., Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening, Z. Anal. Anwendungen, 14, 3, 541-574 (1995) · Zbl 0835.35061 · doi:10.4171/ZAA/639
[61] Grün, G., Droplet spreading under weak slippage—existence for the Cauchy problem, Commun. Partial Differ. Equ., 29, 11-12, 1697-1744 (2004) · Zbl 1156.35388
[62] Grün, G.; Rumpf, M., Simulation of singularities and instabilities arising in thin film flow, Eur. J. Appl. Math., 12, 3, 293-320 (2001) · Zbl 0991.76041 · doi:10.1017/S0956792501004429
[63] Haley, P.; Miksis, M., The effect of the contact line on droplet spreading, J. Fluid Mech., 223, 57-81 (1991) · Zbl 0719.76071 · doi:10.1017/S0022112091001337
[64] Hernández, J.; Mancebo, FJ; Vega, JM, Positive solutions for singular nonlinear elliptic equations, Proc. R. Soc. Edinb. Sect. A, 137, 1, 41-62 (2007) · Zbl 1180.35231 · doi:10.1017/S030821050500065X
[65] Hocking, L., The spreading of a thin drop by gravity and capillarity, Q. J. Mech. Appl. Math., 36, 1, 55-69 (1983) · Zbl 0507.76100 · doi:10.1093/qjmam/36.1.55
[66] Hocking, L., Rival contact-angle models and the spreading of drops, J. Fluid Mech., 239, 671-681 (1992) · Zbl 0754.76022 · doi:10.1017/S0022112092004579
[67] Huh, C.; Scriven, L., Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci., 35, 1, 85-101 (1971) · doi:10.1016/0021-9797(71)90188-3
[68] Jiang, H., Energy minimizers of a thin film equation with Born repulsion force, Commun. Pure Appl. Anal., 10, 2, 803-815 (2011) · Zbl 1235.35141 · doi:10.3934/cpaa.2011.10.803
[69] Jiang, H.; Ni, W-M, On steady states of van der Waals force driven thin film equations, Eur. J. Appl. Math., 18, 2, 153-180 (2007) · Zbl 1135.35035 · doi:10.1017/S0956792507006936
[70] Kang, D.; Nadim, A.; Chugunova, M., Dynamics and equilibria of thin viscous coating films on a rotating sphere, J. Fluid Mech., 791, 495-518 (2016) · Zbl 1339.76017 · doi:10.1017/jfm.2016.67
[71] Kelley, WG; Peterson, AC, The Theory of Differential Equations (2010), New York: Springer, New York · Zbl 1201.34001 · doi:10.1007/978-1-4419-5783-2
[72] Kesavan, S., Symmetrization & Applications (2006), Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1110.35002 · doi:10.1142/6071
[73] Knüpfer, H., Well-posedness for the Navier slip thin-film equation in the case of partial wetting, Commun. Pure Appl. Math., 64, 9, 1263-1296 (2011) · Zbl 1227.35146 · doi:10.1002/cpa.20376
[74] Knüpfer, H., Well-posedness for a class of thin-film equations with general mobility in the regime of partial wetting, Arch. Ration. Mech. Anal., 218, 2, 1083-1130 (2015) · Zbl 1457.35038 · doi:10.1007/s00205-015-0882-x
[75] Knüpfer, H.; Masmoudi, N., Well-posedness and uniform bounds for a nonlocal third order evolution operator on an infinite wedge, Commun. Math. Phys., 320, 2, 395-424 (2013) · Zbl 1316.35251 · doi:10.1007/s00220-013-1708-z
[76] Knüpfer, H.; Masmoudi, N., Darcy’s flow with prescribed contact angle: well-posedness and lubrication approximation, Arch. Ration. Mech. Anal., 218, 2, 589-646 (2015) · Zbl 1457.35039 · doi:10.1007/s00205-015-0868-8
[77] Laugesen, RS; Pugh, MC, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Ration. Mech. Anal., 154, 1, 3-51 (2000) · Zbl 0980.35030 · doi:10.1007/PL00004234
[78] Laugesen, RS; Pugh, MC, Properties of steady states for thin film equations, Eur. J. Appl. Math., 11, 3, 293-351 (2000) · Zbl 1041.76008 · doi:10.1017/S0956792599003794
[79] Laugesen, RS; Pugh, MC, Energy levels of steady states for thin-film-type equations, J. Differ. Equ., 182, 2, 377-415 (2002) · Zbl 1011.34005 · doi:10.1006/jdeq.2001.4108
[80] Laugesen, RS; Pugh, MC, Heteroclinic orbits, mobility parameters and stability for thin film type equations, Electron. J. Differ. Equ., 95, 1-29 (2002) · Zbl 1029.35121
[81] Lazer, AC; McKenna, PJ, On a singular nonlinear elliptic boundary-value problem, Proc. Am. Math. Soc., 111, 3, 721-730 (1991) · Zbl 0727.35057 · doi:10.1090/S0002-9939-1991-1037213-9
[82] Liu, W.; Witelski, TP, Steady states of thin film droplets on chemically heterogeneous substrates, IMA J. Appl. Math., 85, 6, 980-1020 (2020) · Zbl 1460.35025 · doi:10.1093/imamat/hxaa036
[83] Maggi, F., Sets of Finite Perimeter and Geometric Variational Problems (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 1255.49074 · doi:10.1017/CBO9781139108133
[84] Mellet, A., The thin film equation with non-zero contact angle: a singular perturbation approach, Commun. Partial Differ. Equ., 40, 1, 1-39 (2015) · Zbl 1323.35063 · doi:10.1080/03605302.2014.895380
[85] Minkov, E.; Novick-Cohen, A., Droplet profiles under the influence of van der Waals forces, Eur. J. Appl. Math., 12, 3, 367-393 (2001) · Zbl 1097.76552 · doi:10.1017/S0956792501004478
[86] Minkov, E., Novick-Cohen, A.: Errata: “Droplet profiles under the influence of van der Waals forces” [European J. Appl. Math 12 (2001), no. 3, 367-393; mr1936203]. Eur. J. Appl. Math. 17(1), 128 (2006) · Zbl 1097.76552
[87] Nicolaou, ZG, Stability and instability of axisymmetric droplets in thermocapillary-driven thin films, Nonlinearity, 31, 3, 1009-1044 (2018) · Zbl 1391.76149 · doi:10.1088/1361-6544/aa999c
[88] Novick-Cohen, A., On a minimization problem arising in wetting, SIAM J. Appl. Math., 52, 3, 593-613 (1992) · Zbl 0778.49023 · doi:10.1137/0152033
[89] Novick-Cohen, A., A singular minimization problem for droplet profiles, Eur. J. Appl. Math., 4, 4, 399-418 (1993) · Zbl 0798.76073 · doi:10.1017/S0956792500001200
[90] Novick-Cohen, A.; Shishkov, A., The thin film equation with backwards second order diffusion, Interfaces Free Bound., 12, 4, 463-496 (2010) · Zbl 1213.35268 · doi:10.4171/IFB/242
[91] Oliva, F.; Petitta, F., Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness, J. Differ. Equ., 264, 1, 311-340 (2018) · Zbl 1380.35101 · doi:10.1016/j.jde.2017.09.008
[92] Oron, A.; Davis, S.; Bankoff, S., Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69, 3, 931-980 (1997) · doi:10.1103/RevModPhys.69.931
[93] Otto, F., Lubrication approximation with prescribed nonzero contact angle, Commun. Partial Differ. Equ., 23, 11-12, 2077-2164 (1998) · Zbl 0923.35211 · doi:10.1080/03605309808821411
[94] Otto, F.; Rump, T.; Slepčev, D., Coarsening rates for a droplet model: rigorous upper bounds, SIAM J. Math. Anal., 38, 2, 503-529 (2006) · Zbl 1298.76027 · doi:10.1137/050630192
[95] Ren, W.; Hu, D.; E, W., Continuum models for the contact line problem, Phys. Fluids, 22, 10 (2010) · Zbl 1308.76082 · doi:10.1063/1.3501317
[96] Rudin, W., Principles of Mathematical Analysis (1976), New York-Auckland-Düsseldorf: McGraw-Hill Book Co., New York-Auckland-Düsseldorf · Zbl 0346.26002
[97] Seis, C., The thin-film equation close to self-similarity, Anal. PDE, 11, 5, 1303-1342 (2018) · Zbl 1388.35083 · doi:10.2140/apde.2018.11.1303
[98] Snoeijer, J.; Andreotti, B., Moving contact lines: scales, regimes, and dynamical transitions, Annu. Rev. Fluid Mech., 45, 269-292 (2013) · Zbl 1359.76320 · doi:10.1146/annurev-fluid-011212-140734
[99] Stampacchia, G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, fasc. 1, 189-258 (1965) · Zbl 0151.15401 · doi:10.5802/aif.204
[100] Tanner, L., The spreading of silicone oil drops on horizontal surfaces, J. Phys. D Appl. Phys., 12, 9, 1473-1484 (1979) · doi:10.1088/0022-3727/12/9/009
[101] Voinov, O., Hydrodynamics of wetting, Fluid Dyn., 11, 5, 714-721 (1976) · doi:10.1007/BF01012963
[102] Witelski, TP, Nonlinear dynamics of dewetting thin films, AIMS Math., 5, 5, 4229-4259 (2020) · Zbl 1484.76015 · doi:10.3934/math.2020270
[103] Yijing, S.; Duanzhi, Z., The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial Differ. Equ., 49, 3-4, 909-922 (2014) · Zbl 1291.35073 · doi:10.1007/s00526-013-0604-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.