×

Dynamics of a stochastic staged progression model of HIV transmission with a hybrid switch. (English) Zbl 1487.92048

Summary: In this paper, we investigate the dynamics behavior of stochastic hybrid switching staged progression model for the transmission of HIV. The method used in this paper is Lyapunov functions analysis. We establish sufficient conditions for extinction of disease. Especially, we conclude that there is a stationary distribution for the stochastic system and it has ergodicity under appropriate conditions. Finally, some examples and their simulations are provided to illustrate the theoretical results.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
60H30 Applications of stochastic analysis (to PDEs, etc.)
Full Text: DOI

References:

[1] Anderson, R., May, R., Medley, G.et al., A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS, IMA J. Math. Appl. Med. Biol.3 (1986) 229-263. · Zbl 0609.92025
[2] Blythe, S. and Anderson, R., Variable infectiousness in HIV transmission models, IMA J. Math. Appl. Med. Biol.5 (1988) 181-200. · Zbl 0655.92021
[3] Isham, V., Mathematical modelling of the transmission dynamics of HIV infection and AIDS: A review with discussion, J. R. Stat. Soc. Ser. A151 (1988) 5-30. · Zbl 1001.92550
[4] Ida, A., Oharu, S. and Oharu, Y., A mathematical approach to HIV infection dynamics, J. Comput. Appl. Math.204 (2007) 172-186. · Zbl 1112.37328
[5] Hyman, J. and Li, J., An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations, Math. Biosci.167 (2000) 65-86. · Zbl 0962.92033
[6] Liu, Q., Jiang, D., Shi, N., Hayat, T. and Alsaedi, A., Nontrivial periodic solution of a stochastic non-autonomous SISV epidemic model, Phys. A462 (2016) 837-845. · Zbl 1400.92519
[7] Durrett, R., Stochastic spatial models, SIAM Rev.41 (1999) 677-718. · Zbl 0940.60086
[8] Yang, Q., Jiang, D., Shi, N. and Ji, C., The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl.388 (2012) 248-271. · Zbl 1231.92058
[9] Gray, A., Greenhalgh, D., Hu, L., Mao, X. and Pan, J., A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math71 (2011) 876-902. · Zbl 1263.34068
[10] S. Spencer, Stochastic epidemic models for emerging diseases, PhD thesis, University of Nottingham, (2008).
[11] Truscott, J. E. and Gilligan, C. A., Response of a deterministic epidemiological system to a stochastically varying environment, Proc. Nat. Acad. Sci.100 (2003) 9067-9072.
[12] Li, D., Cui, J., Liu, M. and Liu, S., The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate, Bull. Math. Biol.77 (2015) 1705-1743. · Zbl 1339.92058
[13] Lahrouz, A. and Omari, L., Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Stat. Prob. Lett.83 (2013) 960-968. · Zbl 1402.92396
[14] Yang, Q. and Mao, X., Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations, Nonlinear Anal. Real World Appl.14 (2013) 1434-1456. · Zbl 1263.92042
[15] Liu, Z., Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates, Nonlinear Anal. Real World Appl.14 (2013) 1286-1299. · Zbl 1261.34040
[16] Luo, Q. and Mao, X., Stochastic population dynamics under regime switching, J. Math. Anal. Appl.334 (2007) 69-84. · Zbl 1113.92052
[17] Takeuchi, Y., Du, N. H., Hieu, N. T. and Sato, K., Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl.323 (2006) 938-957. · Zbl 1113.34042
[18] Du, N. H., Kon, R., Sato, K. and Takeuchi, Y., Dynamical behavior of Lotka-Volterra competition systems: Non-autonomous bistable case and the effect of telegraph noise, J. Comput. Appl. Math.170 (2004) 399-422. · Zbl 1089.34047
[19] Slatkin, M., The dynamics of a population in a Markovian environment, Ecology59 (1978) 249-256.
[20] Zu, L., Jiang, D. and ORegan, D., Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching, Commun. Nonlin. Sci. Numer. Simul.29 (2015) 1-11. · Zbl 1510.92195
[21] Zhang, X., Jiang, D., Alsaedi, A. and Hayat, T., Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Appl. Math. Lett.59 (2016) 87-93. · Zbl 1343.60095
[22] Settati, A. and Lahrouz, A., Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput.244 (2014) 235-243. · Zbl 1335.92084
[23] Lu, C., Dynamics of a stochastic Markovian switching predator-prey model with infinite memory and general Lévy jumps, Math. Comput. Simulation181 (2021) 316-332. · Zbl 1524.92078
[24] Boukanjime, B., Caraballo, T., El Fatini, M. and El Khalifi, M., Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching, Chaos Solitons Fract.141 (2020) 110361. · Zbl 1496.92104
[25] Wang, Z., Zhang, Q. M. and Li, X. N., Markovian switching for near-optimal control of a stochastic SIV epidemic model, Math. Biosci. Eng.16(3) (2019) 1348-1375. · Zbl 1497.92313
[26] Mao, X., Matasov, A. and Piunovskiy, A. B., Stochastic differential equations with Markovian switching, Beroulli6(1) (2000) 73-90. · Zbl 0956.60060
[27] Zhu, C. and Yin, G., Asymptotic properties of hybrid diffusion systems, SIAM J. Control. Optim.46 (2007) 1155-1179. · Zbl 1140.93045
[28] Has’minskii, R. Z., in Stochastic Stability of Differential Equations, eds. Sijthoff and Noordhoff (Alphen aan den Rijn, The Netherlands, 1980). · Zbl 0441.60060
[29] Zhu, C. and Yin, G., Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim.46 (2007) 1155-1179. · Zbl 1140.93045
[30] Mao, X., Stochastic Differential Equations and Their Applications (Horwood, Chichester, 1997). · Zbl 0892.60057
[31] Liu, S., Xu, X., Jiang, D., Hayatb, T. and Ahmadb, B., Stationary distribution and extinction of the DS-I-A model disease with periodic parameter function and Markovian switching, Appl. Math. Comput.311 (2017) 66-84. · Zbl 1426.60075
[32] Settati, A. and Lahrouz, A., Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput.244 (2014) 235-243. · Zbl 1335.92084
[33] Jacquez, J., Simon, C. and Koopman, J., Core groups and the \(R_0^s\) for subgroups in heterogeneous SIS and SI models, in Epidemic Models: Their Structure and Relation to Data, ed. Mollison (Cambridge University, Cambridge, 1995), p. 279. · Zbl 0839.92021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.