×

Dynamics in a diffusive predator-prey system with double Allee effect and modified Leslie-Gower scheme. (English) Zbl 1491.35024

Summary: In this paper, we investigate a diffusive modified Leslie-Gower predator-prey system with double Allee effect on prey. The global existence, uniqueness and a priori bound of positive solutions are determined. The existence and local stability of constant steady-state solutions are analyzed. Next, we induce the nonexistence of nonconstant positive steady-state solutions, which indicates the effect of large diffusivity. Furthermore, we discuss the steady-state bifurcation and the existence of nonconstant positive steady-state solutions by the bifurcation theory. In addition, Hopf bifurcations of the spatially homogeneous and inhomogeneous periodic orbits are studied. Finally, we make some numerical simulations to validate and complement the theoretical analysis. Our results demonstrate that the dynamics of the system with double Allee effect and modified Leslie-Gower scheme are richer and more complex.

MSC:

35B32 Bifurcations in context of PDEs
35B09 Positive solutions to PDEs
35B35 Stability in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Wang, W. D.et al., Permanence and stability of a stage-structured predator-prey model, J. Math. Anal. Appl.262(2) (2001) 499-528. · Zbl 0997.34069
[2] Du, Y. H. and Shi, J. P., A diffusive predator-prey model with a protection zone, J. Differential Equations229(1) (2006) 63-91. · Zbl 1142.35022
[3] Yang, X. F., Jin, Z. and Xue, Y. K., Weak average persistence and extinction of a predator-prey system in a polluted environment with impulsive toxicant input, Chaos Solitons Fractals31(3) (2007) 726-735. · Zbl 1133.92032
[4] Yi, F. Q., Wei, J. J. and Shi, J. P., Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations246(5) (2009) 1944-1977. · Zbl 1203.35030
[5] Nie, H. and Wu, J. H., Multiplicity and stability of a predator-prey model with non-monotonic conversion rate, Nonlinear Anal. Real World Appl.10(1) (2009) 154-171. · Zbl 1154.35386
[6] Jia, Y. F., Wu, J. H. and Nie, H., The coexistence states of a predator-prey model with non-monotonic functional response and diffusion, Acta. Appl. Math.108 (2009) 413-428. · Zbl 1180.35087
[7] Guo, G. H. and Wu, J. H., Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response, Nonlinear Anal.72(3-4) (2010) 1632-1646. · Zbl 1180.35528
[8] Wang, J. F., Shi, J. P. and Wei, J. J., Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differential Equations251(4-5) (2011) 1276-1304. · Zbl 1228.35037
[9] Eduardo, G. O.et al., Consequences of double Allee effect on the number of limit cycles in a predator-prey model, Comput. Math. Appl.62(9) (2011) 3449-3463. · Zbl 1236.34067
[10] Zhou, J. and Mu, C. L., Positive solutions for a three-trophic food chain model with diffusion and Beddington-DeAngelis functional response, Nonlinear Anal. Real World Appl.12(2) (2011) 902-917. · Zbl 1206.35239
[11] Wei, M. H., Wu, J. H. and Guo, G. H., The effect of predator competition on positive solutions for a predator-prey model with diffusion, Nonlinear Anal.75 (2012) 5053-5068. · Zbl 1242.35209
[12] Pal, P. J. and Mandal, P. K., Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and strong Allee effect, Math. Comput. Simul.97 (2014) 123-146. · Zbl 1519.92207
[13] Cui, R. H., Shi, J. P. and Wu, B. Y., Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Differential Equations256(1) (2014) 108-129. · Zbl 1359.35096
[14] Yang, L. and Zhong, S. M., Dynamics of a diffusive predator-prey model with modified Leslie-Gower schemes and additive Allee effect, Comp. Appl. Math.34(2) (2014) 671-690. · Zbl 1325.35239
[15] Wang, W. M.et al., Dynamical complexity induced by Allee effect in a predator-prey model, Nonlinear Anal. Real World Appl.16 (2014) 103-119. · Zbl 1295.35074
[16] Li, H. X., Asymptotic behavior and multiplicity for a diffusive Leslie-Gower predator-prey system with Crowley-Martin functional response, Comput. Math. Appl.68(7) (2014) 693-705. · Zbl 1362.92063
[17] Feng, P. and Kang, Y., Dynamics of a modified Leslie-Gower model with double Allee effects, Nonlinear Dyn.80(1) (2015) 1051-1062. · Zbl 1345.92115
[18] Pal, P. J. and Saha, T., Qualitative analysis of a predator-prey system with double Allee effect in prey, Chaos Solitons Fractals73 (2015) 36-63. · Zbl 1352.92129
[19] Wang, X. C. and Wei, J. J., Dynamics in a diffusive predator-prey system with strong Allee effect and Ivlev-type functional response, J. Math. Anal. Appl.422(2) (2015) 1447-1462. · Zbl 1310.35032
[20] Pao, C. V., Dynamics of food-chain models with density-dependent diffusion and ratio-dependent reaction function, J. Math. Anal. Appl.433(1) (2016) 355-374. · Zbl 1326.35406
[21] Ni, W. J. and Wang, M. X., Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Differential Equations261(7) (2016) 4244-4274. · Zbl 1391.35221
[22] Cheng, L. F. and Cao, H. J., Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee effect, Commun. Nonlinear Sci.38 (2016) 288-302. · Zbl 1471.92247
[23] Peng, Y. and Zhang, T., Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect, Appl. Math. Comput.275 (2016) 1-12. · Zbl 1410.92108
[24] Li, S. B. and Wu, J. H., Qualitative analysis of a predator-prey model with predator saturation and competition, Acta Appl. Math.141 (2016) 165-185. · Zbl 1381.92083
[25] Li, H. X., Li, Y. L. and Yang, W. B., Existence and asymptotic behavior of positive solutions for a one-prey and two-competing-predators system with diffusion, Nonlinear Anal. Real World Appl.27 (2016) 261-282. · Zbl 1330.35199
[26] Yang, W. B., Existence and asymptotic behavior of solutions for a predator-prey system with a nonlinear growth rate, Acta Appl. Math.152 (2017) 57-72. · Zbl 1387.35365
[27] Sasmal, S. K., Population dynamics with multiple Allee effects induced by fear factors-A mathematical study on prey-predator interactions, Appl. Math. Model.64 (2018) 1-14. · Zbl 1480.92180
[28] Julio, D. C. and Aguirre, P., Allee thresholds and basins of attraction in a predation model with double Allee effect, Math. Methods Appl. Sci.41(7) (2018) 2699-2714. · Zbl 1390.92104
[29] Singh, M. K., Bhadauria, B. S. and Singh, B. K., Bifurcation analysis of modified Leslie-Gower predator-prey model with double Allee effect, Ain Shams Eng. J.9(4) (2018) 1263-1277.
[30] Ma, Z. P., Spatiotemporal dynamics of a diffusive Leslie-Gower prey-predator model with strong Allee effect, Nonlinear Anal. Real World Appl.50 (2019) 651-674. · Zbl 1430.37114
[31] Claudio, A. I., The basins of attraction in a modified May-Holling-Tanner predator-prey model with Allee affect, Nonlinear Anal.185 (2019) 15-28. · Zbl 1421.34032
[32] Wu, D. Y., Zhao, H. Y. and Yuan, Y., Complex dynamics of a diffusive predator-prey model with strong Allee effect and threshold harvesting, J. Math. Anal. Appl.469(2) (2019) 982-1014. · Zbl 1404.35465
[33] Martinez, N. and Aguirre, P., Allee effect acting on the prey species in a Leslie-Gower predation model, Nonlinear Anal. Real World Appl.45 (2019) 895-917. · Zbl 1408.34039
[34] Liu, Y. Y. and Wei, J. J., Dynamical analysis in a diffusive predator-prey system with a delay and strong Allee effect, Math. Methods Appl. Sci.43(4) (2020) 1590-1607. · Zbl 1448.37121
[35] Ren, X. Z., Zhang, T. R. and Liu, X. N., Invasion waves for a diffusive predator-prey model with two preys and one predator, Int. J. Biomath. (2020) 2050081. · Zbl 1461.92097
[36] Allee, W. C., Animal Aggregations: A Study in General Sociology (University of Chicago Press, Chicago, 1931).
[37] Dennis, B., Allee effects: population growth, critical density, and the chance of extinction, Nat. Resour. Model.3(4) (1989) 481-538. · Zbl 0850.92062
[38] Courchamp, F., Berec, L. and Gascoigne, J., Allee effects in ecology and conservation, (Oxford University Press, Oxford, 2008).
[39] Berec, L., Angulo, E. and Courchamp, F., Multiple Allee effects and population management, Trends Ecol. Evol.22(4) (2007) 185-191.
[40] Han, R. J. and Dai, B. X., Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Anal. Real World Appl.45 (2019) 822-853. · Zbl 1406.37064
[41] Ye, Q. X. and Li, Z. Y., Introduction to Reaction-Diffusion Equations (Science Press, Beijing, 1990). · Zbl 0774.35037
[42] Elaiw, A. M. and Agha, A. D., Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response, Nonlinear Anal. Real World Appl.55 (2020) 103116. · Zbl 1453.92130
[43] Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal.8 (1971) 321-340. · Zbl 0219.46015
[44] Burini, D. and Chouhad, N., A multiscale view of nonlinear diffusion in biology: from cells to tissues, Math. Mod. Methods Appl. S29(4) (2019) 791-823. · Zbl 1427.35291
[45] Bellomo, N.et al., Occurrence vs. absence of taxis-driven instabilities in a May-Nowak model for virus infection, SIAM J. Appl. Math.79(5) (2019) 1990-2010. · Zbl 1428.35615
[46] Jia, Z. and Yang, Z. D., Global boundedness to a chemotaxis-haptotaxis model with nonlinear diffusion, Appl. Math. Lett.103 (2020) 106192. · Zbl 1440.35020
[47] Keita, S., Beljadid, A. and Bourgault, Y., Efficient second-order semi-implicit finite element method for fourth-order nonlinear diffusion equations, Comput. Phys. Commun.258 (2021) 107588. · Zbl 07689029
[48] Manimaran, J.et al., A time-fractional HIV infection model with nonlinear diffusion, Results Phys.25 (2021) 104293.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.