×

Three-dimensional lattice Boltzmann model for acoustic waves emitted by a source. (English) Zbl 1502.76068

Summary: This paper implements the lattice Boltzmann method to simulate the propagation of sound waves in three dimensions. The numerical model is exercised on the lid-driven cavity flow. Tests are then proposed on acoustic situations. The results are first confronted with analytical solutions of the spherical waves emitted by a single point source inside a cubic cavity. Then, we studied the case where the waves are emitted from a circular sound source placed at the center of the left boundary of a parallelepipedic cavity filled with water. With the circular source discretized as a set of point sources, we were able to simulate the wave propagation in 3D and calculate the sound pressure amplitude. Tests using different emission conditions and LBM relaxation times finally allowed us to get good comparisons with analytical expressions of the pressure amplitude along the source axis, highlighting the performance of the lattice Boltzmann simulations in acoustics.

MSC:

76M28 Particle methods and lattice-gas methods
76Q05 Hydro- and aero-acoustics

References:

[1] Benhamou, J.; Jami, M.; Mezrhab, A., Application of the Lattice Boltzmann Method to the Acoustic Wave in a Rectangular Enclosure, 42-47 (2020) · doi:10.5220/0010427200420047
[2] Benhamou, J.; Jami, M.; Mezrhab, A.; Botton, V.; Henry, D., Numerical Study of Natural Convection and Acoustic Waves Using the Lattice Boltzmann Method, Heat Transfer, 49, 6, 3779-3796 (2020) · doi:10.1002/htj.21800
[3] Blackstock, D. T., Fundamentals of Physical Acoustics, The Journal of the Acoustical Society of America (2001) · doi:10.1121/1.1354982
[4] Blauert, J.; Xiang, N., Acoustics for Engineers: Troy Lectures (2009), Berlin, Heidelberg: Springer Science & Business Media, Berlin, Heidelberg
[5] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum Transfer of a Boltzmann-Lattice Fluid with Boundaries, Physics of Fluids, 13, 11, 3452-3459 (2001) · Zbl 1184.76068 · doi:10.1063/1.1399290
[6] Buckingham, M. J., Applied Underwater Acoustics, Sound Propagation, 85-184 (2017), Amsterdam: Elsevier, Amsterdam
[7] Buick, J. M.; Greated, C. A.; Campbell, D. M., Lattice BGK Simulation of Sound Waves, EPL (Europhysics Letters), 43, 3, 235 (1998) · doi:10.1209/epl/i1998-00346-7
[8] Charrier-Mojtabi, M. C.; Jacob, X.; Dochy, T.; Mojtabi, A., Species Separation of a Binary Mixture Under Acoustic Streaming, The European Physical Journal E, 42, 5, 1-8 (2019) · doi:10.1140/epje/i2019-11824-9
[9] Chen, S.; Wang, Z.; Shan, X.; Doolen, G. D., Lattice Boltzmann Computational Fluid Dynamics in Three Dimensions, Journal of Statistical Physics, 68, 3, 379-400 (1992) · Zbl 0925.76516 · doi:10.1007/BF01341754
[10] Crocker, M. J., Handbook of Noise and Vibration Control (2007), Hoboken, New Jersey: John Wiley & Sons, Hoboken, New Jersey · Zbl 1187.74001
[11] De, S.; Nagendra, K.; Lakshmisha, K. N., Simulation of Laminar Flow in a Three-Dimensional lid-Driven Cavity by Lattice Boltzmann Method, International Journal of Numerical Methods for Heat & Fluid Flow, 19, 6, 790-815 (2009) · doi:10.1108/09615530910973011
[12] D’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L. S., Multiple-relaxation-time Lattice Boltzmann Models in Three Dimensions. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 360, 1792, 437-451 (2002) · Zbl 1001.76081 · doi:10.1098/rsta.2001.0955
[13] Ding, H.; Shu, C.; Yeo, K. S.; Xu, D., Numerical Computation of Three-Dimensional Incompressible Viscous Flows in the Primitive Variable Form by Local Multiquadric Differential Quadrature Method, Computer Methods in Applied Mechanics and Engineering, 195, 7-8, 516-533 (2006) · Zbl 1222.76072 · doi:10.1016/j.cma.2005.02.006
[14] Ensminger, D.; Bond, L. J., Ultrasonics: Fundamentals, Technologies, and Applications (2011), Boca Raton, Florida: CRC Press, Boca Raton, Florida · doi:10.1201/b11173
[15] Frisch, U.; Hasslacher, B.; Pomeau, Y., Lattice-gas Automata for the Navier-Stokes Equation, Physical Review Letters, 56, 14, 1505 (1986) · doi:10.1103/PhysRevLett.56.1505
[16] Ghasemi, K.; Siavashi, M., Three-dimensional Analysis of Magnetohydrodynamic Transverse Mixed Convection of Nanofluid Inside a lid-Driven Enclosure Using MRT-LBM, International Journal of Mechanical Sciences, 165, 105199 (2020) · doi:10.1016/j.ijmecsci.2019.105199
[17] Guangwu, Y.; Yaosong, C.; Shouxin, H., Simple Lattice Boltzmann Model for Simulating Flows with Shock Wave, Physical Review E, 59, 1, 454 (1999) · doi:10.1103/PhysRevE.59.454
[18] Haydock, D.; Yeomans, J. M., Lattice Boltzmann Simulations of Attenuation-Driven Acoustic Streaming, Journal of Physics A: Mathematical and General, 36, 20, 5683 (2003) · Zbl 1038.76032 · doi:10.1088/0305-4470/36/20/322
[19] He, X.; Luo, L. S., Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation, Physical Review E, 56, 6, 6811 (1997) · doi:10.1103/PhysRevE.56.6811
[20] Heubes, D.; Bartel, A.; Ehrhardt, M., Characteristic Boundary Conditions in the Lattice Boltzmann Method for Fluid and gas Dynamics, Journal of Computational and Applied Mathematics, 262, 51-61 (2014) · Zbl 1301.76061 · doi:10.1016/j.cam.2013.09.019
[21] Hu, Y.; Li, D.; Shu, S.; Niu, X., Lattice Boltzmann Simulation for Three-Dimensional Natural Convection with Solid-Liquid Phase Change, International Journal of Heat and Mass Transfer, 113, 1168-1178 (2017) · doi:10.1016/j.ijheatmasstransfer.2017.05.116
[22] Huang, H.; Sukop, M.; Lu, X., Multiphase Lattice Boltzmann Methods: Theory and Application (2015), Chichester, West Sussex: John Wiley & Sons, Chichester, West Sussex · doi:10.1002/9781118971451
[23] Jacobsen, F., Poulsen, T., Rindel, J. H., Gade, A. C., and Ohlrich, M.. 2011. Fundamentals of Acoustics and Noise Control. Technical University of Denmark, Department of Electrical Engineering.
[24] Jami, M.; Moufekkir, F.; Mezrhab, A.; Fontaine, J. P.; Bouzidi, M., New Thermal MRT Lattice Boltzmann Method for Simulations of Convective Flows, International Journal of Thermal Sciences, 100, 98-107 (2016) · doi:10.1016/j.ijthermalsci.2015.09.011
[25] Jiang, B. N.; Lin, T. L.; Povinelli, L. A., Large-scale Computation of Incompressible Viscous Flow by Least-Squares Finite Element Method, Computer Methods in Applied Mechanics and Engineering, 114, 3-4, 213-231 (1994) · doi:10.1016/0045-7825(94)90172-4
[26] Kinsler, L. E.; Frey, A. R.; Coppens, A. B.; Sanders, J. V., Fundamentals of Acoustics, 4th Edition (2000), New York: John wiley & sons, New York
[27] Ku, H. C.; Hirsh, R. S.; Taylor, T. D., A Pseudospectral Method for Solution of the Three-Dimensional Incompressible Navier-Stokes Equations, Journal of Computational Physics, 70, 2, 439-462 (1987) · Zbl 0658.76027 · doi:10.1016/0021-9991(87)90190-2
[28] Lallemand, P.; Luo, L. S., Theory of the Lattice Boltzmann Method: Acoustic and Thermal Properties in two and Three Dimensions, Physical Review E, 68, 3, 036706 (2003) · doi:10.1103/PhysRevE.68.036706
[29] Leong, T.; Johansson, L.; Juliano, P.; McArthur, S. L.; Manasseh, R., Ultrasonic Separation of Particulate Fluids in Small and Large Scale Systems: A Review, Industrial & Engineering Chemistry Research, 52, 47, 16555-16576 (2013) · doi:10.1021/ie402295r
[30] Li, Q.; Du, D. H.; Fei, L. L.; Luo, K. H., Three-dimensional non-Orthogonal MRT Pseudopotential Lattice Boltzmann Model for Multiphase Flows, Computers & Fluids, 186, 128-140 (2019) · Zbl 1519.76254 · doi:10.1016/j.compfluid.2019.04.014
[31] Li, Z.; Yang, M.; Zhang, Y., Lattice Boltzmann Method Simulation of 3-D Natural Convection with Double MRT Model, International Journal of Heat and Mass Transfer, 94, 222-238 (2016) · doi:10.1016/j.ijheatmasstransfer.2015.11.042
[32] Liu, Q.; Feng, X.; He, Y.; Lu, C.; Gu, Q., Three-dimensional Multiple-Relaxation-Time Lattice Boltzmann Models for Single-Phase and Solid-Liquid Phase-Change Heat Transfer in Porous Media at the REV Scale, Applied Thermal Engineering, 152, 319-337 (2019) · doi:10.1016/j.applthermaleng.2019.02.057
[33] Lopez-Poveda, E. A.; Meddis, R., A Physical Model of Sound Diffraction and Reflections in the Human Concha, The Journal of the Acoustical Society of America, 100, 5, 3248-3232 (1996) · doi:10.1121/1.417208
[34] Martys, N. S.; Chen, H., Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method, Physical Review E, 53, 1, 743 (1996) · doi:10.1103/PhysRevE.53.743
[35] McNamara, G. R.; Zanetti, G., Use of the Boltzmann Equation to Simulate Lattice-gas Automata, Physical Review Letters, 61, 20, 2332 (1988) · doi:10.1103/PhysRevLett.61.2332
[36] Mezrhab, A.; Amine Moussaoui, M.; Jami, M.; Naji, H.; Bouzidi, M., Double MRT Thermal Lattice Boltzmann Method for Simulating Convective Flows, Physics Letters A, 374, 34, 3499-3507 (2010) · Zbl 1238.76042 · doi:10.1016/j.physleta.2010.06.059
[37] Mohamad, A. A., Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes (2011), London: Springer, London · Zbl 1247.80003 · doi:10.1007/978-0-85729-455-5
[38] Moudjed, B., Caractérisation Expérimentale et Théorique des écoulements Entraînés par Ultrasons. Perspectives d’ Utilisation Dans les Procédés de Solidification du Silicium Photovoltaïque, Doctoral thesis (2013), INSA Lyon: INSA Lyon, France
[39] Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.; Garandet, J. P., Scaling and Dimensional Analysis of Acoustic Streaming Jets, Physics of Fluids, 26, 9, 093602 (2014) · doi:10.1063/1.4895518
[40] Pierce, A. D., Acoustics: An Introduction to Its Physical Principles and Applications (2019), Cham, Switzerland: Springer, Cham, Switzerland · doi:10.1007/978-3-030-11214-1
[41] Premnath, K. N.; Abraham, J., Three-Dimensional Multi Relaxation Time (MRT) Lattice-Boltzmann Models for Multiphase Flow, Journal of Computational Physics, 224, 2, 539-559 (2007) · Zbl 1116.76066 · doi:10.1016/j.jcp.2006.10.023
[42] Ranganayakulu, S. V.; Rao, N. R.; Gahane, L., Ultrasound Applications in Medical Sciences, IJMTER, 3, 287-293 (2016)
[43] Salomons, E. M.; Lohman, W. J. A.; Zhou, H., Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation, PloS one, 11, 1, e0147206 (2016) · doi:10.1371/journal.pone.0147206
[44] Timm, K.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E., The Lattice Boltzmann Method: Principles and Practice (2017), AG Switzerland: Springer International Publishing, AG Switzerland · Zbl 1362.76001 · doi:10.1007/978-3-319-44649-3
[45] Viggen, E. M.2009. “The lattice Boltzmann method with applications in acoustics.” Master’s thesis, Norges teknisk-naturvitenskapelige universitet, Fakultet for naturvitenskap og teknologi, Institutt for fysikk.
[46] Viggen, E. M.2014. “The lattice Boltzmann method: Fundamentals and acoustics.” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
[47] Wang, Y.; Shu, C.; Teo, C. J.; Wu, J.; Yang, L., Three-Dimensional Lattice Boltzmann Flux Solver and Its Applications to Incompressible Isothermal and Thermal Flows, Communications in Computational Physics, 18, 3, 593-620 (2015) · Zbl 1373.76274 · doi:10.4208/cicp.300514.160115a
[48] Wood, A. K. W.; Sehgal, C. M., A Review of low-Intensity Ultrasound for Cancer Therapy, Ultrasound in Medicine & Biology, 41, 4, 905-928 (2015) · doi:10.1016/j.ultrasmedbio.2014.11.019
[49] Xiao, S., A Lattice Boltzmann Method for Shock Wave Propagation in Solids, Communications in Numerical Methods in Engineering, 23, 1, 71-84 (2007) · Zbl 1149.74351 · doi:10.1002/cnm.883
[50] Xu, A.; Zhao, T. S.; An, L.; Shi, L., A Three-Dimensional Pseudo-Potential-Based Lattice Boltzmann Model for Multiphase Flows with Large Density Ratio and Variable Surface Tension, International Journal of Heat and Fluid Flow, 56, 261-271 (2015) · doi:10.1016/j.ijheatfluidflow.2015.08.001
[51] Yang, L. M.; Shu, C.; Chen, Z.; Wu, J., Three-dimensional Lattice Boltzmann Flux Solver for Simulation of Fluid-Solid Conjugate Heat Transfer Problems with Curved Boundary, Physical Review E, 101, 5, 053309 (2020) · doi:10.1103/PhysRevE.101.053309
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.