×

A Bayesian approach to degradation modeling and reliability assessment of rolling element bearing. (English) Zbl 07532208

Summary: This paper presents two Bayesian hierarchical models – one utilizing the life-time data and other using the structural health monitoring (SHM) data, for degradation modeling and reliability assessment of rolling element bearings. The main advantage of the proposed life-time data based model is that, it accounts for the variability in failure times caused due to the difference in material properties, initial degradation, operating and environmental conditions by introducing Bayesian hierarchy in the model parameters. On the other hand, SHM data (such as vibration and strain) based model focuses on stochastic nature of bearing degradation, and models it using a two-phase Wiener process. In this model, the point of phase-transition is the time when the damage initiates. The detection of such a point is undertaken using Bayesian change point algorithms. For both the models, the model parameters and reliability are updated as more data becomes available. In this manner, the prior domain knowledge and life-time data or SHM data collected from the field can effectively be integrated to get updated reliability. Two case studies for rolling element bearings are presented to demonstrate the applicability to life-time as well as SHM data.

MSC:

62-XX Statistics

Software:

WinBUGS
Full Text: DOI

References:

[1] Antoni, J., Blind separation of vibration components: Principles and demonstrations, Mechanical Systems and Signal Processing, 19, 6, 1166-80 (2005) · doi:10.1016/j.ymssp.2005.08.008
[2] Antoni, J.; Randall, R., The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines, Mechanical Systems and Signal Processing, 20, 2, 308-31 (2006) · doi:10.1016/j.ymssp.2004.09.002
[3] Bae, S. J.; Yuan, T., Statistical modeling for degradation data, Hierarchical Bayesian change-point analysis for nonlinear degradation data, 21-41 (2017), Springer · Zbl 1402.62163
[4] Bae, S. J.; Yuan, T.; Ning, S.; Kuo, W., A Bayesian approach to modeling two-phase degradation using change-point regression, Reliability Engineering & System Safety, 134, 66-74 (2015) · doi:10.1016/j.ress.2014.10.009
[5] Borghesani, P.; Pennacchi, P.; Chatterton, S., The relationship between kurtosis-and envelope-based indexes for the diagnostic of rolling element bearings, Mechanical Systems and Signal Processing, 43, 1-2, 25-43 (2014) · doi:10.1016/j.ymssp.2013.10.007
[6] Chen, N.; Tsui, K. L., Condition monitoring and remaining useful life prediction using degradation signals: Revisited, IIE Transactions, 45, 9, 939-52 (2013) · doi:10.1080/0740817X.2012.706376
[7] Chinnam, R. B., On-line reliability estimation for individual components using statistical degradation signal models, Quality and Reliability Engineering International, 18, 1, 53-73 (2002) · doi:10.1002/qre.453
[8] Cinlar, E.; Bazant, Z. P.; Osman, E. M., Stochastic process for extrapolating concrete creep, Journal of Engineering Mechanics, 103, ASCE 13447 Proceeding (1977)
[9] Doksum, K. A.; Hóyland, A.; Hoyland, A., Models for variable-stress accelerated life testing experiments based on Wener processes and the inverse gaussian distribution, Technometrics, 34, 1, 74-82 (1992) · Zbl 0763.62048 · doi:10.2307/1269554
[10] Dong, G.; Chen, J., Study on cyclic energy indicator for degradation assessment of rolling element bearings, Journal of Vibration and Control, 17, 12, 1805-16 (2011) · doi:10.1177/1077546310362860
[11] Edirisinghe, R.; Setunge, S.; Zhang, G., Application of gamma process for building deterioration prediction, Journal of Performance of Constructed Facilities, 27, 6, 763-73 (2013) · doi:10.1061/(ASCE)CF.1943-5509.0000358
[12] Elsayed, E. A., Reliability engineering, 88 (2012), John Wiley & Sons · Zbl 1250.90002
[13] Elwany, A. H.; Gebraeel, N. Z., Sensor-driven prognostic models for equipment replacement and spare parts inventory, IIE Transactions, 40, 7, 629-39 (2008) · doi:10.1080/07408170701730818
[14] Fearnhead, P.; Liu, Z., On-line inference for multiple changepoint problems, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69, 4, 589-605 (2007) · Zbl 07555366 · doi:10.1111/j.1467-9868.2007.00601.x
[15] Feng, J.; Sun, Q.; Jin, T., Storage life prediction for a high-performance capacitor using multi-phase wiener degradation model, Communications in Statistics - Simulation and Computation, 41, 8, 1317-35 (2012) · Zbl 1270.62157 · doi:10.1080/03610918.2011.624241
[16] Freitas, M. A.; Colosimo, E. A.; Santos, T. R. d.; Pires, M. C., Reliability assessment using degradation models: Bayesian and classical approaches, Pesquisa Operacional, 30, 1, 194-219 (2010) · doi:10.1590/S0101-74382010000100010
[17] Freitas, M. A.; de Toledo, M. L. G.; Colosimo, E. A.; Pires, M. C., Using degradation data to assess reliability: A case study on train wheel degradation, Quality and Reliability Engineering International, 25, 5, 607-29 (2009) · doi:10.1002/qre.995
[18] Gebraeel, N.; Elwany, A.; Pan, J., Residual life predictions in the absence of prior degradation knowledge, IEEE Transactions on Reliability, 58, 1, 106-17 (2009) · doi:10.1109/TR.2008.2011659
[19] Gebraeel, N. Z.; Lawley, M. A., A neural network degradation model for computing and updating residual life distributions, IEEE Transactions on Automation Science and Engineering, 5, 1, 154-63 (2008) · doi:10.1109/TASE.2007.910302
[20] Gebraeel, N. Z.; Lawley, M. A.; Li, R.; Ryan, J. K., Residual-life distributions from component degradation signals: A Bayesian approach, IiE Transactions, 37, 6, 543-57 (2005) · doi:10.1080/07408170590929018
[21] Guérin, F.; Barreau, M.; Demri, A.; Cloupet, S.; Hersant, J.; Hambli, R., Mathematical and statistical models and methods in reliability, Bayesian estimation of degradation model defined by a wiener process, 345-57 (2010) · Zbl 1407.62437
[22] Jardine, A. K.; Lin, D.; Banjevic, D., A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mechanical Systems and Signal Processing, 20, 7, 1483-510 (2006) · doi:10.1016/j.ymssp.2005.09.012
[23] Kass, R. E.; Raftery, A. E., Bayes factors, Journal of the American Statistical Association, 90, 430, 773-95 (1995) · Zbl 0846.62028 · doi:10.1080/01621459.1995.10476572
[24] Kong, D.; Balakrishnan, N.; Cui, L., Two-phase degradation process model with abrupt jump at change point governed by wiener process, IEEE Transactions on Reliability, 66, 4, 1345-60 (2017) · doi:10.1109/TR.2017.2711621
[25] Ku, P.; Anderson, E.; Carper, H., Some considerations in rolling fatigue evaluation, ASLE Transactions, 15, 2, 113-29 (1972) · doi:10.1080/05698197208981408
[26] Lawless, J.; Crowder, M., Covariates and random effects in a gamma process model with application to degradation and failure, Lifetime Data Analysis, 10, 3, 213-27 (2004) · Zbl 1054.62122 · doi:10.1023/B:LIDA.0000036389.14073.dd
[27] Lawless, J. F., Statistical models and methods for lifetime data, 362 (2011), John Wiley & Sons · Zbl 0541.62081
[28] Lee, J.; Qiu, H.; Yu, G.; Lin, J., Rexnord technical services: Bearing data set (2007), Moffett Field, CA: IMS, Univ. Cincinnati. NASA Ames Prognostics Data Repository, Moffett Field, CA
[29] Lim, H.; Kim, Y. S.; Bae, S. J.; Sung, S.-I., Partial accelerated degradation test plans for wiener degradation processes, Quality Technology & Quantitative Management, 16, 1, 67-81 (2019) · doi:10.1080/16843703.2017.1368968
[30] Liu, T.; Sun, Q.; Feng, J.; Pan, Z.; Huangpeng, Q., Residual life estimation under time-varying conditions based on a wiener process, Journal of Statistical Computation and Simulation (2017) · Zbl 07191933 · doi:10.1080/00949655.2016.1202953
[31] Lu, C. J.; Meeker, W. O., Using degradation measures to estimate a time-to-failure distribution, Technometrics, 35, 2, 161-74 (1993) · Zbl 0775.62271 · doi:10.1080/00401706.1993.10485038
[32] Lu, C. J.; Meeker, W. Q.; Escobar, L. A., A comparison of degradation and failure-time analysis methods for estimating a time-to-failure distribution, Statistica Sinica, 531-46 (1996) · Zbl 0854.62092
[33] Ntzoufras, I., Bayesian modeling using WinBUGS, 698 (2011), John Wiley & Sons · Zbl 1218.62015
[34] Pandey, M.; Yuan, X.; van Noortwijk, J., A comparison of probabilistic deterioration models for life-cycle management of structures, Structure and Infrastructure Engineering, 140, 735-46 (2007)
[35] Pishro-Nik, H., Introduction to probability, statistics and random processes (2014)
[36] Prakash, G.; Narasimhan, S., Bayesian two-phase gamma process model for damage detection and prognosis, Journal of Engineering Mechanics, 144, 2 (2018) · doi:10.1061/(ASCE)EM.1943-7889.0001386
[37] Prakash, G.; Narasimhan, S.; Pandey, M. D., A probabilistic approach to remaining useful life prediction of rolling element bearings, Structural Health Monitoring, 18, 2, 466-85 (2019) · doi:10.1177/1475921718758517
[38] Qiu, H.; Lee, J.; Lin, J.; Yu, G., Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics, Journal of Sound and Vibration, 289, 4-5, 1066-90 (2006) · doi:10.1016/j.jsv.2005.03.007
[39] Randall, R. B., Vibration-based condition monitoring: Industrial, aerospace and automotive applications (2011), John Wiley & Sons
[40] Sawalhi, N., Diagnostics, prognostics and fault simulation for rolling element bearings (2007), The University of New South Wales Australia, The University of New South Wales Australia
[41] Shen, Z.; He, Z.; Chen, X.; Sun, C.; Liu, Z., A monotonic degradation assessment index of rolling bearings using fuzzy support vector data description and running time, Sensors, 12, 8, 10109-35 (2012) · doi:10.3390/s120810109
[42] Si, X.-S.; Chen, M.-Y.; Wang, W.; Hu, C.-H.; Zhou, D.-H., Specifying measurement errors for required lifetime estimation performance, European Journal of Operational Research, 231, 3, 631-44 (2013) · Zbl 1317.62080 · doi:10.1016/j.ejor.2013.05.046
[43] Si, X.-S.; Wang, W.; Hu, C.-H.; Chen, M.-Y.; Zhou, D.-H., A wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation, Mechanical Systems and Signal Processing, 35, 1-2, 219-37 (2013) · doi:10.1016/j.ymssp.2012.08.016
[44] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; Van Der Linde, A., Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 4, 583-639 (2002) · Zbl 1067.62010 · doi:10.1111/1467-9868.00353
[45] Tang, S.; Guo, X.; Yu, C.; Xue, H.; Zhou, Z., Accelerated degradation tests modeling based on the nonlinear wiener process with random effects, Mathematical Problems in Engineering, 2014, 1-11 (2014) · doi:10.1155/2014/560726
[46] Tang, S.; Yu, C.; Wang, X.; Guo, X.; Si, X., Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error, Energies, 7, 2, 520-47 (2014) · doi:10.3390/en7020520
[47] Tseng, S.-T.; Hamada, M.; Chiao, C.-H., Using degradation data to improve fluorescent lamp reliability, Journal of Quality Technology, 27, 4, 363-9 (1995) · doi:10.1080/00224065.1995.11979618
[48] Van Noortwijk, J., A survey of the application of gamma processes in maintenance, Reliability Engineering & System Safety, 94, 1, 2-21 (2009) · doi:10.1016/j.ress.2007.03.019
[49] Van Noortwijk, J.; Kallen, M.; Pandey, M., Gamma processes for time-dependent reliability of structures, Advances in Safety and Reliability, Proceedings of ESREL, 1457-64 (2005)
[50] Vanli, O. A., A failure time prediction method for condition-based maintenance, Quality Engineering, 26, 3, 335-49 (2014) · doi:10.1080/08982112.2013.830740
[51] Wang, D.; Miao, Q.; Kang, R., Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition, Journal of Sound and Vibration, 324, 3-5, 1141-57 (2009) · doi:10.1016/j.jsv.2009.02.013
[52] Wang, D.; Tsui, K.-L., Statistical modeling of bearing degradation signals, IEEE Transactions on Reliability, 66, 4, 1331-44 (2017) · doi:10.1109/TR.2017.2739126
[53] Wang, D.; Tsui, K.-L., Theoretical investigation of the upper and lower bounds of a generalized dimensionless bearing health indicator, Mechanical Systems and Signal Processing, 98, 890-901 (2018) · doi:10.1016/j.ymssp.2017.05.040
[54] Wang, D.; Tsui, K.-L., Two novel mixed effects models for prognostics of rolling element bearings, Mechanical Systems and Signal Processing, 99, 1-13 (2018) · doi:10.1016/j.ymssp.2017.06.004
[55] Wang, D.; Tsui, K.-L.; Miao, Q., Prognostics and health management: A review of vibration based bearing and gear health indicators, IEEE Access., 6, 665-76 (2018) · doi:10.1109/ACCESS.2017.2774261
[56] Wang, P.; Tang, Y.; Bae, S. J.; He, Y., Bayesian analysis of two-phase degradation data based on change-point wiener process, Reliability Engineering & System Safety, 170, 244-56 (2018) · doi:10.1016/j.ress.2017.09.027
[57] Wang, P.; Tang, Y.; Bae, S. J.; Xu, A., Bayesian approach for two-phase degradation data based on change-point wiener process with measurement errors, IEEE Transactions on Reliability, 67, 2, 688-700 (2018) · doi:10.1109/TR.2017.2785978
[58] Wang, X.; Balakrishnan, N.; Guo, B., Residual life estimation based on a generalized wiener degradation process, Reliability Engineering & System Safety, 124, 13-23 (2014) · doi:10.1016/j.ress.2013.11.011
[59] Wang, X.; Jiang, P.; Guo, B.; Cheng, Z., Real-time reliability evaluation with a general wiener process-based degradation model, Quality and Reliability Engineering International, 30, 2, 205-20 (2014) · doi:10.1002/qre.1489
[60] Whitmore, G.; Schenkelberg, F., Modelling accelerated degradation data using wiener diffusion with a time scale transformation, Lifetime Data Analysis, 3, 1, 27-45 (1997) · Zbl 0891.62071
[61] Zhan, Y.; Mechefske, C. K., Robust detection of gearbox deterioration using compromised autoregressive modeling and kolmogorov-smirnov test statistic-part i: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis, Mechanical Systems and Signal Processing, 21, 5, 1953-82 (2007) · doi:10.1016/j.ymssp.2006.11.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.