×

Mathematical modeling, forecasting, and optimal control of typhoid fever transmission dynamics. (English) Zbl 1485.93465

Summary: In this paper, we derive and analyze a model for the control of typhoid fever which takes into account an imperfect vaccine combined with protection, environment sanitation, and treatment as control mechanisms. The analysis of the autonomous model passes through the computation of the control reproduction number \(\mathcal{R}_c\), the proof of the local and global stability of the disease-free equilibrium whenever \(\mathcal{R}_c\) is less than one using Lyapunov’s theory. When \(\mathcal{R}_c\) is greater than one, we prove the local asymptotic stability of the unique endemic equilibrium through the Center Manifold Theory and we find that the model exhibits a forward bifurcation. Using clinical data from Mbandjock, a town in the Centre Region of Cameroon, we calibrate the model by estimating model parameters. We find that the control reproduction number is approximatively equal to 2.4750, which means that we are in an endemic state \((\mathcal{R}_c>1)\). We also performed a sensitivity analysis by calculating the Partial Rank Correlation Coefficient (PRCC) of \(\mathcal{R}_c\) and of infected compartments classes. Then, we extend the model by reformulating it as an optimal control problem, with the use of three time-dependent controls, namely vaccination, individual protection/environment sanitation, and treatment. Optimal control theory is used to analyze our optimal control model. Numerical simulations and efficiency analysis are performed to show the impact of each control strategy on the decrease of the disease burden.

MSC:

93D20 Asymptotic stability in control theory
49N90 Applications of optimal control and differential games
92D30 Epidemiology

Software:

Matlab
Full Text: DOI

References:

[1] World Health Organization, Typhoid vaccines: who position paper, Weekly Epidemiol Record, 83, 06, 49-59 (2008)
[2] World Health Organization, Typhoid vaccines: who position paper-march 2018-vaccins antityphoïdiques: note de synthèse de l’oms-mars 2018, Weekly Epidemiol Record, 93, 13, 153-172 (2018)
[3] Jacquinet, S.; SACHELI, R.; MELIN, P., Vibrio cholerae (cholera), Maladies infectieuses liées à la consommation des aliments et de l’eau Surveillance épidémiologique 2015-2016, 82-84 (2018)
[4] Kim, J.-H.; Mogasale, V.; Im, J.; Ramani, E.; Marks, F., Updated estimates of typhoid fever burden in sub-Saharan Africa, Lancet Global Health, 5, 10, e969 (2017)
[5] Nsutebu, E. F.; Ndumbe, P. M.; Koulla, S., The increase in occurrence of typhoid fever in cameroon: overdiagnosis due to misuse of the widal test?, Trans R Soc TropMed Hygiene, 96, 1, 64-67 (2002)
[6] Bakach, I.; Just, M. R.; Gambhir, M.; Fung, I. C.-H., Typhoid transmission: a historical perspective on mathematical model development, Trans R Soc TropMed Hyg, 109, 11, 679-689 (2015)
[7] Chamuchi, M. N.; Sigey, J. K.; Okello, J. A.; Okwoyo, J. M., SIICR model and simulation of the effects of carriers on the transmission dynamics of typhoid fever in KISII Town Kenya, SIJ Trans Comput SciEng Appl (CSEA), 2, 3 (May 2014)
[8] Cvjetanović, B.; Grab, B.; Uemura, K., Epidemiological model of typhoid fever and its use in the planning and evaluation of antityphoid immunization and sanitation programmes, Bull World Health Organ, 45, 1, 53 (1971)
[9] Edward, S.; Nyerere, N., Modelling typhoid fever with education, vaccination and treatment, Eng Math, 1, 1, 44-52 (2016)
[10] Khan, M. A.; Parvez, M.; Islam, S.; Khan, I.; Shafie, S.; Gul, T., Mathematical analysis of typhoid model with saturated incidence rate, Adv Stud Biol, 7, 2, 65-78 (2015)
[11] Lauria, D. T.; Maskery, B.; Poulos, C.; Whittington, D., An optimization model for reducing typhoid cases in developing countries without increasing public spending, Vaccine, 27, 10, 1609-1621 (2009)
[12] Mushayabasa, S., A simple epidemiological model for typhoid with saturated incidence rate and treatment effect, Int J Biol VetAgric Food Eng, 6, 6, 688-695 (2012)
[13] Mushayabasa, S., Modeling the impact of optimal screening on typhoid dynamics, Int J Dyn Control, 4, 3, 330-338 (2016)
[14] Mutua, J. M.; Wang, F.-B.; Vaidya, N. K., Modeling malaria and typhoid fever co-infection dynamics, Math Biosci, 264, 128-144 (2015) · Zbl 1371.92124
[15] Nthiiri, J.; Lawi, G.; Akinyi, C.; Oganga, D.; Muriuki, W.; Musyoka, M., Mathematical modelling of typhoid fever disease incorporating protection against infection, J Adv Math ComputSci, 1-10 (2016)
[16] Olumuyiwa, P.; Ibrahim, M.; Oguntolu, F.; Akinduko, O.; Akinyemi, S., Direct and indirect transmission dynamics of typhoid fever model by differential transform method, ATBU J Sci Technol Educ, 6, 1, 167-177 (2018)
[17] Peter, O.; Ibrahim, M.; Akinduko, O.; Rabiu, M., Mathematical model for the control of typhoid fever, IOSR J Math, 13, 14, 60-66 (2017)
[18] 2277-0011.
[19] Tilahun, G. T.; Makinde, O. D.; Malonza, D., Modelling and optimal control of typhoid fever disease with cost-effective strategies, Comput Math Methods Med, 2017 (2017) · Zbl 1397.92683
[20] Tilahun, G. T.; Makinde, O. D.; Malonza, D., Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis, Appl Math Comput, 316, 438-459 (2018) · Zbl 1426.92086
[21] Iowa department of public health. Guide to surveillance, investigation, and reporting - typhoid fever. http://www.idph.state.ia.us/idph_universalhelp/MainContent.aspx?glossaryInd=0&TOCId=83930F22-5479-45C4-935B-FDBFBB01BF83; 2014.
[22] Virginia department of health. Typhoid fever. http://www.vdh.Virginia.gov/epidemiology/factsheets/Typhoid_Fever.htm; 2013.
[23] S141-S150.
[24] Smith, H. L., Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Bull (New Series) Am MathSoc, 33, 203-209 (1996)
[25] Garba, S. M.; Lubuma, J. M.-S.; Tsanou, B., Modeling the transmission dynamics of the COVID-19 pandemic in South Africa, Math Biosci, 328, 108441 (2020) · Zbl 1453.92298
[26] Nabi, K. N.; Abboubakar, H.; Kumar, P., Forecasting of COVID-19 pandemic: from integer derivatives to fractional derivatives, Chaos Solitons Fractals, 141, 110283 (2020) · Zbl 1496.92122
[27] van den Driessche, P.; Watmough, J., Reproduction numbers and the sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180, 29-48 (2002) · Zbl 1015.92036
[28] LaSalle, J. P., The stability of dynamical systems, vol. 25 (1976), Siam · Zbl 0364.93002
[29] Wang, X., A simple proof of descartes’s rule of signs, Am Math Month, 111, 6, 525 (2004) · Zbl 1080.26507
[30] Abboubakar, H.; Buonomo, B.; Chitnis, N., Modelling the effects of malaria infection on mosquito biting behaviour and attractiveness of humans, Ric Mat, 65, 1, 329-346 (2016) · Zbl 1354.92078
[31] Abboubakar, H.; Kamgang, J. C.; Tieudjo, D., Backward bifurcation and control in transmission dynamics of arboviral diseases, Math Biosci, 278, 100-129 (2016) · Zbl 1347.34073
[32] Buonomo, B., A note on the direction of the transcritical bifurcation in epidemic models, Nonlinear Anal Model Control, 20, 38-55 (2015) · Zbl 1416.92152
[33] Castillo-Chavez, C.; Song, B., Dynamical models of tuberculosis and their applications, Math Biosci Eng, 1, 361-404 (2004) · Zbl 1060.92041
[34] Chitnis, N.; Cushing, J. M.; Hyman, J., Bifurcation analysis of a mathematical model for malaria transmission, SIAM J Appl Math, 67, 1, 24-45 (2006) · Zbl 1107.92047
[35] Carr, J., Applications of centre manifold theory, vol. 35 (2012), Springer Science & Business Media
[36] Abboubakar, H.; Kamgang, J. C.; Nkamba, N. L.; Tieudjo, D.; Emini, L., Modeling the dynamics of arboviral diseases with vaccination perspective, Biomath, 4, 1, 1507241 (2015) · Zbl 1373.92116
[37] Garba, S. M.; Gumel, A. B.; Bakar, M. A., Backward bifurcations in dengue transmission dynamics, Math Biosci, 215, 1, 11-25 (2008) · Zbl 1156.92036
[38] Inc. M. MATLAB. 3 Apple Hill Drive, Natick, Massachusetts, 01760, United States: MathWorks Inc.; 2016.09.22. http://www.mathworks.com.
[39] Wu, J.; Dhingra, R.; Gambhir, M.; Remais, J. V., Sensitivity analysis of infectious disease models: methods, advances and their application, J R Soc Interface, 10, 86, 20121018 (2013)
[40] Chitnis, N.; Hyman, J. M.; Cushing, J. M., Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull Math Biol, 70, 5, 1272-1296 (2008) · Zbl 1142.92025
[41] Lukes, D. L., Differential equations: classical to controlled (1982), Elsevier · Zbl 0509.34003
[42] Abboubakar, H.; Kamgang, J. C.; Nkamba, L. N.; Tieudjo, D., Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, J Math Biol, 76, 1-2, 379-427 (2018) · Zbl 1393.37098
[43] Lenhart, S.; Workman, J. T., Optimal control applied to biological models (2007), Chapman and Hall · Zbl 1291.92010
[44] Fleming, W.; Rishel, R.; Marchuk, G.; Balakrishnan, A.; Borovkov, A.; Makarov, V., Applications of mathematics, Deterministic Stochastic Opt Control (1975)
[45] Pontryagin L, Boltyanskii V, Gamkrelidze R, Mishchenko E. The mathematical theory of optimal control process, vol. 4. 1986.
[46] Durand, J., Evaluation de la prévalence de salmonella spp. dans les élevages de porcs à la réunion. impact de l’infection de l’élevage sur la contamination des carcasses après le processus d’abattage (2009), UM2, Ph.D. thesis
[47] Dumont, Y.; Chiroleu, F., Vector control for the chikungunya disease, Math Biosci Eng, 7, 2, 313 (2010) · Zbl 1259.92071
[48] S499-S509.
[49] ISBN 978-0-12-803708-9.
[50] Crump, J. A.; Luby, S. P.; Mintz, E. D., The global burden of typhoid fever, Bull World Health Organ, 82, 346-353 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.