×

Comparison and application of non-conforming mesh models for flow in fractured porous media using dual Lagrange multipliers. (English) Zbl 07524771

Summary: Geological settings, such as reservoirs, include fractures with different material properties and geometric features. Hence, numerical simulations in applied geophysics demands for computational frameworks which efficiently allow us to integrate various fracture geometries in a porous medium matrix. This study focuses on a modeling approach for single-phase flow in fractured porous media and its application to different types of non-conforming mesh models. We propose a combination of the Lagrange multiplier method with variational transfer techniques for simulating flow through fractured porous media by employing complex non-conforming geometries as well as hybrid- and equi-dimensional models and discretizations. The variational transfer is based on the \(L^2\)-projection and enables an accurate and highly efficient parallel projection of fields between non-conforming meshes (e.g., between fracture and porous matrix domain).
We present the different techniques as a unified mathematical framework with a practical perspective. By means of numerical examples we discuss both, performance and applicability of the particular strategies. Comparisons of finite element simulation results to widely adopted 2D benchmark cases show good agreement and the dual Lagrange multiplier spaces show good performance. In an extension to 3D fracture network, we first provide complementary results to a recently developed benchmark case and afterwards we explore a complex scenario which leverages the different types of fracture meshes. Complex and highly conductive fracture networks are found more suitable in combination with embedded hybrid-dimensional fractures. However, thick and blocking fractures are better approximated by equi-dimensional embedded fractures and the equi-dimensional mortar method, respectively.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
76Sxx Flows in porous media; filtration; seepage
76Mxx Basic methods in fluid mechanics

References:

[1] Pochon, A.; Tripet, J.-P.; Kozel, R.; Meylan, B.; Sinreich, M.; Zwahlen, F., Groundwater protection in fractured media: a vulnerability-based approach for delineating protection zones in Switzerland, Hydrogeol. J., 16 (2008)
[2] Read, T.; Bour, O.; Bense, V.; Le Borgne, T.; Goderniaux, P.; Klepikova, M.; Hochreutener, R.; Lavenant, N.; Boschero, V., Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing, Geophys. Res. Lett., 40, 2055-2059 (2013)
[3] Tester, J. W.; Anderson, B.; Batchelor, A.; Blackwell, D.; DiPippo, R.; Drake, E.; Garnish, J.; Livesay, B.; Moore, M. C.; Nichols, K., The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century, vol. 209 (2006), Massachusetts Institute of Technology
[4] McClure, M. W.; Horne, R. N., Correlations between formation properties and induced seismicity during high pressure injection into granitic rock, Eng. Geol., 175, 74-80 (2014)
[5] Bond, C. E.; Wightman, R.; Ringrose, P. S., The influence of fracture anisotropy on co2 flow, Geophys. Res. Lett., 40, 1284-1289 (2003)
[6] Bonnet, E.; Bour, O.; Odling, N. E.; Davy, P.; Main, I.; Cowie, P.; Berkowitz, B., Scaling of fracture systems in geological media, Rev. Geophys., 39, 347-383 (2001)
[7] Rasmuson, A.; Neretnieks, I., Radionuclide transport in fast channels in crystalline rock, Water Resour. Res., 22, 1247-1256 (1986)
[8] Amann, F.; Gischig, V.; Evans, K.; Doetsch, J.; Jalali, R.; Valley, B.; Krietsch, H.; Dutler, N.; Villiger, L.; Brixel, B., The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment, Solid Earth, 9, 115-137 (2018)
[9] de Dreuzy, J.-R.; Méheust, Y.; Pichot, G., Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (dfn), J. Geophys. Res., Solid Earth, 117 (2012)
[10] Zimmerman, R.; Kumar, S.; Bodvarsson, G., Lubrication theory analysis of the permeability of rough-walled fractures, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 28, 325-331 (1991)
[11] Ebigbo, A.; Lang, P. S.; Paluszny, A.; Zimmerman, R. W., Inclusion-based effective medium models for the permeability of a 3d fractured rock mass, Transp. Porous Media, 113, 137-158 (2016)
[12] Vogler, D.; Amann, F.; Bayer, P.; Elsworth, D., Permeability evolution in natural fractures subject to cyclic loading and gouge formation, Rock Mech. Rock Eng., 49, 3463-3479 (2016)
[13] Neuman, S. P., Stochastic approach to subsurface flow and transport: a view to the future, (International Hydrology Series (1997), Cambridge University Press), 231-241
[14] Berkowitz, B., Characterizing flow and transport in fractured geological media: a review, Adv. Water Resour., 25, 861-884 (2002)
[15] Cacas, M. C.; Ledoux, E.; Marsily, G.; Tillie, B.; Barbreau, A.; Durand, E.; Feuga, B.; Peaudecerf, P., Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model, Water Resour. Res., 26, 479-489 (1990)
[16] Hobé, A.; Vogler, D.; Seybold, M. P.; Ebigbo, A.; Settgast, R. R.; Saar, M. O., Estimating fluid flow rates through fracture networks using combinatorial optimization, Adv. Water Resour., 122, 85-97 (2018)
[17] Neuman, S. P., Trends, prospects and challenges in quantifying flow and transport through fractured rocks, Hydrogeol. J., 13, 124-147 (2005)
[18] de Dreuzy, J.-R.; Pichot, G.; Poirriez, B.; Erhel, J., Synthetic benchmark for modeling flow in 3d fractured media, Comput. Geosci., 50, 59-71 (2013)
[19] Dessirier, B.; Tsang, C.-F.; Niemi, A., A new scripting library for modeling flow and transport in fractured rock with channel networks, Comput. Geosci., 111, 181-189 (2018)
[20] Warren, J.; Root, P., The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J., 3, 245-255 (1963)
[21] Barenblatt, G.; Zheltov, I. P.; Kochina, I., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech., 24, 1286-1303 (1960) · Zbl 0104.21702
[22] Kazemi, H., Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, Soc. Pet. Eng. J., 9, 451-462 (1969)
[23] Kazemi, H.; Merrill, L.; Porterfield, K.; Zeman, P., Numerical simulation of water-oil flow in naturally fractured reservoirs, Soc. Pet. Eng. J., 16, 317-326 (1976)
[24] Noorishad, J.; Mehran, M., An upstream finite element method for solution of transient transport equation in fractured porous media, Water Resour. Res., 18, 588-596 (1982)
[25] Baca, R. G.; Arnett, R. C.; Langford, D. W., Modelling fluid flow in fractured-porous rock masses by finite-element techniques, Int. J. Numer. Methods Fluids, 4, 337-348 (1984) · Zbl 0579.76095
[26] Hyman, J. D.; Karra, S.; Makedonska, N.; Gable, C. W.; Painter, S. L.; Viswanathan, H. S., dfnworks: a discrete fracture network framework for modeling subsurface flow and transport, Comput. Geosci., 84, 10-19 (2015)
[27] Flemisch, B.; Darcis, M.; Erbertseder, K.; Faigle, B.; Lauser, A.; Mosthaf, K.; Müthing, S.; Nuske, P.; Tatomir, A.; Wolff, M.; Rainer, H., Dumux: dune for multi-{phase, component, scale, physics,…} flow and transport in porous media, Adv. Water Resour., 34, 1102-1112 (2011)
[28] Lipnikov, K.; Manzini, G.; Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 257, 1163-1227 (2014) · Zbl 1352.65420
[29] Lee, I.-H.; Ni, C.-F., Fracture-based modeling of complex flow and co2 migration in three-dimensional fractured rocks, Comput. Geosci., 81, 64-77 (2015)
[30] Lee, I.-H.; Ni, C.-F.; Lin, F.-P.; Lin, C.-P.; Ke, C.-C., Stochastic modeling of flow and conservative transport in three-dimensional discrete fracture networks, Hydrol. Earth Syst. Sci., 23, 19-34 (2019)
[31] Cacace, M.; Blöcher, G., Meshit—a software for three dimensional volumetric meshing of complex faulted reservoirs, Environ. Earth Sci., 74, 5191-5209 (2015)
[32] Holm, R.; Kaufmann, R.; Heimsund, B.-O.; Øian, E.; Espedal, M. S., Meshing of domains with complex internal geometries, Numer. Linear Algebra Appl., 13, 717-731 (2006) · Zbl 1174.76363
[33] Blessent, D.; Therrien, R.; MacQuarrie, K., Coupling geological and numerical models to simulate groundwater flow and contaminant transport in fractured media, Comput. Geosci., 35, 1897-1906 (2009)
[34] Karimi-Fard, M.; Durlofsky, L.; Aziz, K., An efficient discrete-fracture model applicable for general-purpose reservoir simulators, SPE J., 9, 227-236 (2004)
[35] Bogdanov, I.; Mourzenko, V.; Thovert, J.-F.; Adler, P., Two-phase flow through fractured porous media, Phys. Rev. E, 68, Article 026703 pp. (2003)
[36] Monteagudo, J.; Firoozabadi, A., Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media, Water Resour. Res., 40 (2004)
[37] Helmig, R., Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems (1997), Springer-Verlag
[38] Flemisch, B.; Berre, I.; Boon, W.; Fumagalli, A.; Schwenck, N.; Scotti, A.; Stefansson, I.; Tatomir, A., Benchmarks for single-phase flow in fractured porous media, Adv. Water Resour., 111, 239-258 (2018)
[39] Keilegavlen, E.; Berge, R.; Fumagalli, A.; Starnoni, M.; Stefansson, I.; Varela, J.; Berre, I., Porepy: an open-source software for simulation of multiphysics processes in fractured porous media, Comput. Geosci., 1-23 (2020)
[40] Nordbotten, J. M.; Boon, W. M.; Fumagalli, A.; Keilegavlen, E., Unified approach to discretization of flow in fractured porous media, Comput. Geosci., 23, 225-237 (2019) · Zbl 1414.76064
[41] Devloo, P.; Teng, W.; Zhang, C.-S., Multiscale hybrid-mixed finite element method for flow simulation in fractured porous media, Comput. Model. Eng. Sci., 119, 145-163 (2019)
[42] Duran, O.; Devloo, P. R.B.; Gomes, S. M.; Valentin, F., A multiscale hybrid method for Darcy’s problems using mixed finite element local solvers, Comput. Methods Appl. Mech. Eng., 354, 213-244 (2019) · Zbl 1441.76058
[43] Brenner, K.; Groza, M.; Guichard, C.; Lebeau, G.; Masson, R., Gradient discretization of hybrid dimensional Darcy flows in fractured porous media, Numer. Math., 134, 569-609 (2016) · Zbl 1358.76069
[44] Brenner, K.; Hennicker, J.; Masson, R.; Samier, P., Gradient discretization of hybrid-dimensional Darcy flow in fractured porous media with discontinuous pressures at matrix-fracture interfaces, IMA J. Numer. Anal., 37, 1551-1585 (2016) · Zbl 1433.76101
[45] Facciolà, C.; Antonietti, P. F.; Verani, M., Mixed-primal discontinuous Galerkin approximation of flows in fractured porous media on polygonal and polyhedral grids, PAMM, 19, Article e201900117 pp. (2019)
[46] Li, L.; Lee, S. H., Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media, SPE Reserv. Eval. Eng., 11, 750-758 (2008)
[47] Hajibeygi, H.; Karvounis, D. C.; Jenny, P., A hierarchical fracture model for the iterative multiscale finite volume method, J. Comput. Phys., 230, 8729-8743 (2011) · Zbl 1370.76095
[48] Ţene, M.; Bosma, S. B.; Al Kobaisi, M. S.; Hajibeygi, H., Projection-based embedded discrete fracture model (pedfm), Adv. Water Resour., 105, 205-216 (2017)
[49] Moinfar, A.; Varavei, A.; Sepehrnoori, K.; Johns, R. T., Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs, SPE J., 19, 289-303 (2014)
[50] Nikitin, K. D.; Yanbarisov, R. M., Monotone embedded discrete fractures method for flows in porous media, J. Comput. Appl. Math., 364, Article 112353 pp. (2020) · Zbl 1434.65220
[51] Flemisch, B.; Fumagalli, A.; Scotti, A., A review of the XFEM-based approximation of flow in fractured porous media, (Advances in Discretization Methods (2016), Springer International Publishing), 47-76 · Zbl 1371.76093
[52] Xu, Z.; Yang, Y., The hybrid dimensional representation of permeability tensor: a reinterpretation of the discrete fracture model and its extension on nonconforming meshes, J. Comput. Phys., 415, Article 109523 pp. (2020) · Zbl 1440.76089
[53] Capatina, D.; Luce, R.; El-Otmany, H.; Barrau, N., Nitsche’s extended finite element method for a fracture model in porous media, Appl. Anal., 95, 2224-2242 (2016) · Zbl 1457.65184
[54] Huang, H.; Long, T. A.; Wan, J.; Brown, W. P., On the use of enriched finite element method to model subsurface features in porous media flow problems, Comput. Geosci., 15, 721-736 (2011) · Zbl 1237.76193
[55] Schwenck, N.; Flemisch, B.; Helmig, R.; Wohlmuth, B. I., Dimensionally reduced flow models in fractured porous media: crossings and boundaries, Comput. Geosci., 19, 1219-1230 (2015) · Zbl 1391.76747
[56] D’Angelo, C.; Scotti, A., A mixed finite element method for Darcy flow in fractured porous media with non-matching grids, ESAIM: Math. Model. Numer. Anal., 46, 465-489 (2012) · Zbl 1271.76322
[57] Fumagalli, A.; Scotti, A., A numerical method for two-phase flow in fractured porous media with non-matching grids, Adv. Water Resour., 62, 454-464 (2013) · Zbl 1273.76398
[58] Fumagalli, A.; Keilegavlen, E.; Scialò, S., Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations, J. Comput. Phys., 376, 694-712 (2019) · Zbl 1416.76306
[59] Köppel, M.; Martin, V.; Jaffré, J.; Roberts, J. E., A Lagrange multiplier method for a discrete fracture model for flow in porous media, Comput. Geosci., 23, 239-253 (2018) · Zbl 1414.76059
[60] Schädle, P.; Zulian, P.; Vogler, D.; Bhopalam, S. R.; Nestola, M. G.; Ebigbo, A.; Krause, R.; Saar, M. O., 3d non-conforming mesh model for flow in fractured porous media using Lagrange multipliers, Comput. Geosci., 132, 42-55 (2019)
[61] Berre, I.; Doster, F.; Keilegavlen, E., Flow in fractured porous media: a review of conceptual models and discretization approaches, Transp. Porous Media, 130, 215-236 (2019)
[62] Nestola, M. G.C.; Becsek, B.; Zolfaghari, H.; Zulian, P.; Marinis, D. D.; Krause, R.; Obrist, D., An immersed boundary method for fluid-structure interaction based on variational transfer, J. Comput. Phys., 398, Article 108884 pp. (2019) · Zbl 1453.74078
[63] Osborn, S.; Zulian, P.; Benson, T.; Villa, U.; Krause, R.; Vassilevski, P. S., Scalable hierarchical pde sampler for generating spatially correlated random fields using nonmatching meshes, Numer. Linear Algebra Appl., 25, Article e2146 pp. (2018) · Zbl 1499.65006
[64] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., 111, 283-303 (1994) · Zbl 0845.73078
[65] Bernardi, C.; Maday, Y.; Patera, A. T., Domain decomposition by the mortar element method, (Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters (1993), Springer), 269-286 · Zbl 0799.65124
[66] Popp, A.; Wohlmuth, B. I.; Gee, M. W.; Wall, W. A., Dual quadratic mortar finite element methods for 3d finite deformation contact, SIAM J. Sci. Comput., 34, B421-B446 (2012) · Zbl 1250.74020
[67] Von Planta, C.; Vogler, D.; Chen, X.; Nestola, M. G.; Saar, M. O.; Krause, R., Simulation of hydro-mechanically coupled processes in rough rock fractures using an immersed boundary method and variational transfer operators, Comput. Geosci., 23, 1125-1140 (2019) · Zbl 1425.76254
[68] Frih, N.; Martin, V.; Roberts, J. E.; Saâda, A., Modeling fractures as interfaces with nonmatching grids, Comput. Geosci., 16, 1043-1060 (2012)
[69] Boon, W. M.; Nordbotten, J. M.; Yotov, I., Robust discretization of flow in fractured porous media, SIAM J. Numer. Anal., 56, 2203-2233 (2018) · Zbl 1402.65149
[70] Hesch, C.; Gil, A.; Carreño, A. A.; Bonet, J.; Betsch, P., A mortar approach for fluid-structure interaction problems: immersed strategies for deformable and rigid bodies, Comput. Methods Appl. Mech. Eng., 278, 853-882 (2014) · Zbl 1423.74889
[71] Wohlmuth, B. I., A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38, 989-1012 (2000) · Zbl 0974.65105
[72] Briggs, W. L.; McCormick, S. F., A Multigrid Tutorial, vol. 72 (2000), Siam · Zbl 0958.65128
[73] Spaces, Sobolev, 159-194 (2008), Springer: Springer Berlin Heidelberg, Berlin, Heidelberg
[74] Lamichhane, B. P.; Stevenson, R. P.; Wohlmuth, B. I., Higher order mortar finite element methods in 3d with dual Lagrange multiplier bases, Numer. Math., 102, 93-121 (2005) · Zbl 1082.65120
[75] Paz, M.; Leigh, W., Static condensation and substructuring, (Integrated Matrix Analysis of Structures (2001), Springer), 239-260
[76] Krause, D.; Dickopf, T.; Potse, M.; Krause, R., Towards a large-scale scalable adaptive heart model using shallow tree meshes, J. Comput. Phys., 298, 79-94 (2015) · Zbl 1349.76940
[77] Farah, P.; Wall, W. A.; Popp, A., A mortar finite element approach for point, line, and surface contact, Int. J. Numer. Methods Eng., 114, 255-291 (2018) · Zbl 07878333
[78] Sutherland, I. E.; Hodgman, G. W., Reentrant polygon clipping, Commun. ACM, 17, 32-42 (1974) · Zbl 0271.68065
[79] Cerveny, J.; Dobrev, V.; Kolev, T., Nonconforming Mesh Refinement for High-Order Finite Elements (2019) · Zbl 1471.65210
[80] Zulian, P.; Kopaničáková, A.; Nestola, M. C.G.; Fink, A.; Fadel, N.; Magri, V.; Schneider, T.; Botter, E., Utopia: a C++ embedded domain specific language for scientific computing. Git repository (2016)
[81] Zulian, P.; Kopaničáková, A.; Nestola, M. G.C.; Fadel, N.; Fink, A.; VandeVondele, J.; Krause, R., Large scale simulation of pressure induced phase-field fracture propagation using Utopia, CCF Trans. High Perform. Comput. (2021)
[82] Kirk, B. S.; Peterson, J. W.; Stogner, R. H.; Carey, G. F., libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations, Eng. Comput., 22, 237-254 (2006)
[83] Zulian, P., ParMOONoLith: parallel intersection detection and automatic load-balancing library. Git repository (2016)
[84] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[85] Berre, I.; Boon, W. M.; Flemisch, B.; Fumagalli, A.; Gläser, D.; Keilegavlen, E.; Scotti, A.; Stefansson, I.; Tatomir, A.; Brenner, K.; Burbulla, S.; Devloo, P.; Duran, O.; Favino, M.; Hennicker, J.; Lee, I.-H.; Lipnikov, K.; Masson, R.; Mosthaf, K.; Nestola, M. G.C.; Ni, C.-F.; Nikitin, K.; Schädle, P.; Svyatskiy, D.; Yanbarisov, R.; Zulian, P., Verification benchmarks for single-phase flow in three-dimensional fractured porous media, Adv. Water Resour., 147, Article 103759 pp. (2021)
[86] Yan, N.; Zhou, A., Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Methods Appl. Mech. Eng., 190, 4289-4299 (2001) · Zbl 0986.65098
[87] Nicholson, T. J.; McCartin, T.; Davis, P. A.; Beyeler, W., Nrc experiences in hydrocoin: an international project for studying ground-water flow modeling strategies, (Waste Management’87: Waste Isolation in the US, Technical Programs, and Public Education (1987))
[88] Kamenski, L.; Huang, W.; Xu, H., Conditioning of finite element equations with arbitrary anisotropic meshes, Math. Comput., 83, 2187-2211 (2014) · Zbl 1303.65097
[89] Zielke, W.; Helmig, R.; Krohn, K. P.; Shao, H.; Wollrath, J., Discrete modelling of transport processes in fractured porous rock, (7th ISRM Congress, International Society for Rock Mechanics and Rock Engineering (1991))
[90] Barlag, C.; Hinkelmann, R.; Helmig, R.; Zielke, W., Adaptive methods for modelling transport processes in fractured subsurface systems, (3rd International Conference on Hydroscience and Engineering, Cottbus, vol. 284 (1998), Center of Computational Hydroscience and Engineering, The University of Mississippi)
[91] Amann, F.; Gischig, V.; Evans, K.; Doetsch, J.; Jalali, R.; Valley, B.; Krietsch, H.; Dutler, N.; Villiger, L.; Brixel, B.; Klepikova, M.; Kittilä, A.; Madonna, C.; Wiemer, S.; Saar, M. O.; Loew, S.; Driesner, T.; Maurer, H.; Giardini, D., The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment, Solid Earth, 9, 115-137 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.