×

An asymptotic-preserving 2D-2P relativistic drift-kinetic-equation solver for runaway electron simulations in axisymmetric tokamaks. (English) Zbl 07524770

Summary: We propose an asymptotic-preserving (AP), uniformly convergent numerical scheme for the relativistic collisional Drift-Kinetic Equation (rDKE) to simulate runaway electrons in axisymmetric toroidal magnetic field geometries typical of tokamak devices. The approach is derived from an exact Green’s function solution with numerical approximations of quantifiable impact, and results in a simple, two-step operator-split algorithm, consisting of a collisional Eulerian step, and a Lagrangian orbit-integration step with analytically prescribed kernels. The AP character of the approach is demonstrated by analysis of the dominant numerical errors, as well as by numerical experiments. We demonstrate the ability of the algorithm to provide accurate answers regardless of plasma collisionality on a circular axisymmetric tokamak geometry.

MSC:

82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
82Dxx Applications of statistical mechanics to specific types of physical systems

Software:

ODEPACK; DKE; CQL3D; NORSE

References:

[1] Woods, L. C., Theory of Tokamak Transport: New Aspects for Nuclear Fusion Reactor Design (2006), John Wiley & Sons · Zbl 1089.82032
[2] Connor, J.; Hastie, R., Relativistic limitations on runaway electrons, Nucl. Fusion, 15, 3, 415 (1975)
[3] Stahl, A.; Landreman, M.; Embréus, O.; Fülöp, T., NORSE: a solver for the relativistic non-linear Fokker-Planck equation for electrons in a homogeneous plasma, Comput. Phys. Commun., 212, 269-279 (2017) · Zbl 1380.65183
[4] Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R. S.; Saint-Laurent, F.; Vlainic, M., Kinetic modelling of runaway electron avalanches in tokamak plasmas, Plasma Phys. Control. Fusion, 57, 9, Article 095006 pp. (2015)
[5] Guo, Z.; McDevitt, C. J.; Tang, X.-Z., Phase-space dynamics of runaway electrons in magnetic fields, Plasma Phys. Control. Fusion, 59, 4, Article 044003 pp. (2017)
[6] McDevitt, C.; Tang, X.-Z., Runaway electron generation in axisymmetric tokamak geometry, Europhys. Lett., 127, 4, Article 45001 pp. (2019)
[7] McDevitt, C. J.; Guo, Z.; Tang, X.-Z., Spatial transport of runaway electrons in axisymmetric tokamak plasmas, Plasma Phys. Control. Fusion, 61, 2, Article 024004 pp. (2019)
[8] Harvey, R.; Chan, V.; Chiu, S.; Evans, T.; Rosenbluth, M.; Whyte, D., Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model, Phys. Plasmas, 7, 11, 4590-4599 (2000)
[9] Decker, J.; Hirvijoki, E.; Embreus, O.; Peysson, Y.; Stahl, A.; Pusztai, I.; Fülöp, T., Numerical characterization of bump formation in the runaway electron tail, Plasma Phys. Control. Fusion, 58, 2, Article 025016 pp. (2016)
[10] Landreman, M.; Stahl, A.; Fülöp, T., Numerical calculation of the runaway electron distribution function and associated synchrotron emission, Comput. Phys. Commun., 185, 3, 847-855 (2014)
[11] Hesslow, L.; Embréus, O.; Wilkie, G. J.; Papp, G.; Fülöp, T., Effect of partially ionized impurities and radiation on the effective critical electric field for runaway generation, Plasma Phys. Control. Fusion, 60, Article 074010 pp. (jun 2018)
[12] Brizard, A. J.; Chan, A. A., Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations, Phys. Plasmas, 6, 12, 4548-4558 (1999)
[13] Braams, B. J.; Karney, C. F., Differential form of the collision integral for a relativistic plasma, Phys. Rev. Lett., 59, 16, 1817 (1987)
[14] Daniel, D.; Taitano, W. T.; Chacón, L., A fully implicit, scalable, conservative nonlinear relativistic Fokker-Planck 0D-2P solver for runaway electrons, Comput. Phys. Commun., 254, Article 107361 pp. (2020) · Zbl 1537.82029
[15] Crouseilles, N.; Lemou, M.; Méhats, F., Asymptotic preserving schemes for highly oscillatory Vlasov-Poisson equations, J. Comput. Phys., 248, 287-308 (2013) · Zbl 1349.82062
[16] Fedele, B.; Negulescu, C.; Possanner, S., Asymptotic-preserving scheme for the resolution of evolution equations with stiff transport terms, Multiscale Model. Simul., 17, 1, 307-343 (2019) · Zbl 1412.35331
[17] Harvey, R.; McCoy, M., The CQL3D Fokker-Planck code, (Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas (1992)), 489-526
[18] Decker, J.; Peysson, Y., DKE: a fast numerical solver for the 3D drift kinetic equation (2004), Euratom-CEA Report No. EUR-CEA-FC-1736
[19] Petrov, Y.; Harvey, R. W., Benchmarking the fully relativistic collision operator in CQL3D (2009), CompX report CompX-2009-1
[20] Chacon, L.; del Castillo-Negrete, D.; Hauck, C. D., An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation, J. Comput. Phys., 272, 719-746 (2014) · Zbl 1349.82072
[21] Dreicer, H., Electron and ion runaway in a fully ionized gas. I, Phys. Rev., 115, 2, 238 (1959) · Zbl 0086.44202
[22] Bhatnagar, P.; Gross, E.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. Lett., 94, 3, 511-525 (1954) · Zbl 0055.23609
[23] Hindmarsh, A. C., ODEPACK, a systematized collection of ODE solvers, (Stepleman, R. S., Scientific Computing (1983), North-Holland: North-Holland Amsterdam), 55-64
[24] Kulsrud, R. M.; Sun, Y.-C.; Winsor, N. K.; Fallon, H. A., Runaway electrons in a plasma, Phys. Rev. Lett., 31, 11, 690 (1973)
[25] Huba, J., NRL Plasma Formulary 2009 (2009), Tech. Rep., Naval Research Lab Washington DC Beam Physics Branch
[26] Liu, C.; Qin, H.; Hirvijoki, E.; Wang, Y.; Liu, J., Conservative magnetic moment of runaway electrons and collisionless pitch-angle scattering, Nucl. Fusion, 58, 10, Article 106018 pp. (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.