×

Agglomeration-based geometric multigrid solvers for compact discontinuous Galerkin discretizations on unstructured meshes. (English) Zbl 1515.65279

Summary: We present a geometric multigrid solver for the Compact Discontinuous Galerkin method through building a hierarchy of coarser meshes using a simple agglomeration method which handles arbitrary element shapes and dimensions. The method is easily extendable to other discontinuous Galerkin discretizations, including the Local DG method and the Interior Penalty method. We demonstrate excellent solver performance for Poisson’s equation, provided a flux formulation is used for the operator coarsening and a suitable switch function chosen for the numerical fluxes.

MSC:

65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

BoomerAMG; MFEM

References:

[1] Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J.-S.; Cerveny, J.; Dobrev, V.; Dudouit, Y.; Fisher, A.; Kolev, Tz.; Pazner, W.; Stowell, M.; Tomov, V.; Akkerman, I.; Dahm, J.; Medina, D.; Zampini, S., MFEM: a modular finite element library, Comput. Math. Appl., 81, 42-74 (2021) · Zbl 1524.65001
[2] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2001-2002), (electronic) · Zbl 1008.65080
[3] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. Comput., 31, 138, 333-390 (1977) · Zbl 0373.65054
[4] Brenner, Susanne C.; Ridgway Scott, L., The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15 (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0804.65101
[5] Chan, Tony F.; Xu, Jinchao; Zikatanov, Ludmil, An agglomeration multigrid method for unstructured grids, (Domain Decomposition Methods. Domain Decomposition Methods, 10 Boulder, CO, 1997. Domain Decomposition Methods. Domain Decomposition Methods, 10 Boulder, CO, 1997, Contemp. Math., vol. 218 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 67-81 · Zbl 0909.65102
[6] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998), (electronic) · Zbl 0927.65118
[7] Dargaville, Steven; Buchan, Andrew G.; Smedley-Stevenson, Richard P.; Smith, Paul N.; Pain, Christopher C., A comparison of element agglomeration algorithms for unstructured geometric multigrid (2020), arXiv preprint
[8] Ekström, Sven-Erik; Berggren, Martin, Agglomeration multigrid for the vertex-centered dual discontinuous Galerkin method, (ADIGMA-A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications (2010), Springer), 301-308
[9] Fidkowski, K. J.; Oliver, T. A.; Lu, J.; Darmofal, D. L., p-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, J. Comput. Phys., 207, 1, 92-113 (2005) · Zbl 1177.76194
[10] Fortunato, Daniel; Rycroft, Chris H.; Saye, Robert, Efficient operator-coarsening multigrid schemes for local discontinuous Galerkin methods, SIAM J. Sci. Comput., 41, 6, A3913-A3937 (2019) · Zbl 1435.65225
[11] Henson, Van Emden; Yang, Ulrike Meier, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, (Developments and Trends in Iterative Methods for Large Systems of Equations—in Memoriam Rüdiger Weiss. Developments and Trends in Iterative Methods for Large Systems of Equations—in Memoriam Rüdiger Weiss, Lausanne 2000, vol. 41 (2002)), 155-177 · Zbl 0995.65128
[12] Jones, Jim E.; Vassilevski, Panayot S., AMGe based on element agglomeration, SIAM J. Sci. Comput., 23, 1, 109-133 (2001) · Zbl 0992.65140
[13] Karypis, George; Kumar, Vipin, A fast and highly quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 1, 359-392 (1999) · Zbl 0915.68129
[14] Nastase, C.; Mavriplis, D., A parallel hp-multigrid solver for three-dimensional discontinuous Galerkin discretizations of the Euler equations, (45th AIAA Aerospace Sciences Meeting and Exhibit. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2007)), AIAA-2007-512
[15] Pazner, Will, Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods, SIAM J. Sci. Comput., 42, 5, A3055-A3083 (2020) · Zbl 1452.65051
[16] Peraire, J.; Persson, P.-O., The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM J. Sci. Comput., 30, 4, 1806-1824 (2008) · Zbl 1167.65436
[17] Persson, P.-O.; Peraire, J., Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations, SIAM J. Sci. Comput., 30, 6, 2709-2733 (2008) · Zbl 1362.76052
[18] Sampath, Rahul S.; Biros, George, A parallel geometric multigrid method for finite elements on octree meshes, SIAM J. Sci. Comput., 32, 3, 1361-1392 (2010) · Zbl 1213.65144
[19] Saye, Robert I., Efficient multigrid solution of elliptic interface problems using viscosity-upwinded local discontinuous Galerkin methods, Commun. Appl. Math. Comput. Sci., 14, 2, 247-283 (2019) · Zbl 1431.65027
[20] Strauss, D.; Azevedo, J. L.F., On the development of an agglomeration multigrid solver for turbulent flows, J. Braz. Soc. Mech. Sci. Eng., 25, 4, 315-324 (2003)
[21] Sundar, Hari; Stadler, Georg; Biros, George, Comparison of multigrid algorithms for high-order continuous finite element discretizations, Numer. Linear Algebra Appl., 22, 4, 664-680 (2015) · Zbl 1349.65680
[22] Xu, Jinchao, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34, 4, 581-613 (1992) · Zbl 0788.65037
[23] Xu, Jinchao; Zikatanov, Ludmil, Algebraic multigrid methods, Acta Numer., 26, 591-721 (2017) · Zbl 1378.65182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.