×

Hamilton-Green solver for the forward and adjoint problems in photoacoustic tomography. (English) Zbl 07524793

Summary: The majority of the solvers for the acoustic problem in Photoacoustic Tomography (PAT) rely on full solution of the wave equation, which makes them less suitable for real-time and dynamic applications where only partial data is available. This is in contrast to other tomographic modalities, e.g. X-ray tomography, where partial data implies partial cost for the application of the forward and adjoint operators. In this work we present a novel solver for the forward and adjoint wave equations for the acoustic problem in PAT. We term the proposed solver Hamilton-Green as it approximates the fundamental solution to the respective wave equation along the trajectories of the Hamiltonian system resulting from the high frequency asymptotic approximate solution for the wave equation. This approach is flexible and scalable in the sense that it allows computing the solution for each sensor independently at a fraction of the cost of the full wave solution. The theoretical foundations of our approach are rooted in results available in seismics and ocean acoustics. To demonstrate the feasibility of our approach we present results for 2D domains with homogeneous and heterogeneous sound speeds and evaluate them against a full wave solution obtained with a pseudospectral finite difference method implemented in the k-Wave toolbox [Treeby, Bradley E. and Cox, Benjamin T., “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields”, J. Biomed. Opt. 15, No. 2, Article ID 021314, 12 p. (2010; doi:10.1117/1.3360308)].

MSC:

78Axx General topics in optics and electromagnetic theory
35Lxx Hyperbolic equations and hyperbolic systems
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

Matlab; k-Wave; OASES

References:

[1] Treeby, B. E.; Cox, B. T., k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields, J. Biomed. Opt., 15, Article 021314 pp. (2010)
[2] Xu, M.; Wang, L. V., Photoacoustic imaging in biomedicine, Rev. Sci. Instrum., 77, Article 041101 pp. (2006)
[3] Kuchment, P.; Kunyansky, L., Mathematics of photoacoustic and thermoacoustic tomography, (Handbook of Mathematical Methods in Imaging (2011), Springer), 817-865 · Zbl 1259.92065
[4] Cox, B.; Laufer, J.; Beard, P., The Challenges for Quantitative Photoacoustic Imaging, Proc. SPIE, vol. 7177, 717713 (2009)
[5] Arridge, S. R.; Betcke, M. M.; Cox, B. T.; Lucka, F.; Treeby, B. E., On the adjoint operator in photoacoustic tomography, Inverse Probl., 32, Article 115012 pp. (2016) · Zbl 1354.35165
[6] Belhachmi, Z.; Glatz, T.; Scherzer, O., A direct method for photoacoustic tomography with inhomogeneous sound speed, Inverse Probl., 32, Article 045005 pp. (2016) · Zbl 1382.65289
[7] Stefanov, P.; Uhlmann, G., Thermoacoustic tomography with variable sound speed, Inverse Probl., 25, Article 075011 pp. (2009) · Zbl 1177.35256
[8] Givoli, D., Time reversal as a computational tool in acoustics and elastodynamics, J. Comput. Acoust., 22, Article 1430001 pp. (2014) · Zbl 1360.76001
[9] Xu, Y.; Wang, L. V., Application of time reversal to thermoacoustic tomography, (Proceedings of SPIE, vol. 5320 (2004)), 257-263
[10] Qian, J.; Stefanov, P.; Uhlmann, G.; Zhao, H., An efficient Neumann series-based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed, SIAM J. Imaging Sci., 4, 850-883 (2011) · Zbl 1279.94029
[11] Holm, S., Ultrasim-a Toolbox for Ultrasound Field Simulation (2001), University of Oslo
[12] Gerstoft, P., CABRILLO 1.0: Acoustic, Elastic and Poroelastic Finite Difference Modelling (2004)
[13] Lou, Y.; Zhou, W.; Matthews, T. P.; Appleton, C. M.; Anastasio, M. A., Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging, J. Biomed. Opt., 22, Article 041015 pp. (2017)
[14] Mast, T. D., Empirical relationships between acoustic parameters in human soft tissues, Acoust. Res. Lett. Online, 1, 37-42 (2000)
[15] Matthews, T. P.; Anastasio, M. A., Joint reconstruction of the initial pressure and speed of sound distributions from combined photoacoustic and ultrasound tomography measurements, Inverse Probl., 33, Article 124002 pp. (2017) · Zbl 1394.92073
[16] Matthews, T. P.; Anastasio, M. A., Joint reconstruction of the sound speed and initial pressure distributions for ultrasound computed tomography and photoacoustic computed tomography, (Medical Imaging 2017: Ultrasonic Imaging and Tomography, vol. 10139 (2017), International Society for Optics and Photonics), 101390B
[17] Li, C.; Duric, N.; Littrup, P.; Huang, L., In vivo breast sound-speed imaging with ultrasound tomography, Ultrasound Med. Biol., 35, 1615-1628 (2009)
[18] Duric, N.; Littrup, P.; Babkin, A.; Chambers, D.; Azevedo, S.; Kalinin, A.; Pevzner, R.; Tokarev, M.; Holsapple, E.; Rama, O.; Duncan, R., Development of ultrasound tomography for breast imaging: technical assessment, Med. Phys., 32, 1375-1386 (2005)
[19] Ehrhardt, M. J.; Markiewicz, P.; Chambolle, A.; Richtárik, P.; Schott, J.; Schönlieb, C.-B., Faster PET Reconstruction with a Stochastic Primal-Dual Hybrid Gradient Method, Wavelets and Sparsity XVII, vol. 10394, 103941O (2017), International Society for Optics and Photonics
[20] Chambolle, A.; Ehrhardt, M. J.; Richtárik, P.; Schönlieb, C.-B., Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications, 1-25 (2017)
[21] Engquist, B.; Runborg, O., Computational high frequency wave propagation, Acta Numer., 12, 181-266 (2003) · Zbl 1049.65098
[22] Rakesh, A linearised inverse problem for the wave equation, Commun. Partial Differ. Equ., 13, 573-601 (1988) · Zbl 0671.35078
[23] Benamou, J.-D.; Solliec, I., An Eulerian method for capturing caustics, J. Comput. Phys., 162, 132-163 (2000) · Zbl 0958.65076
[24] Cheng, L.-T.; Osher, S.; Qian, J., Level set based Eulerian methods for multivalued traveltimes in both isotropic and anisotropic media, (73rd Annu. Int. Mtg., Soc. Expl. Geophys., Expanded Abstracts (2002), Citeseer), 1801-1804
[25] Fomel, S.; Sethian, J. A., Fast-phase space computation of multiple arrivals, Proc. Natl. Acad. Sci., 99, 7329-7334 (2002) · Zbl 1002.65113
[26] Engquist, B.; Runborg, O.; Tornberg, A.-K., High-frequency wave propagation by the segment projection method, J. Comput. Phys., 178, 373-390 (2002) · Zbl 0996.78001
[27] Qian, J.; Symes, W. W., An adaptive finite-difference method for traveltimes and amplitudes, Geophysics, 67, 167-176 (2002)
[28] Qian, J.; Leung, S., A local level set method for paraxial geometrical optics, SIAM J. Sci. Comput., 28, 206-223 (2006) · Zbl 1106.78001
[29] Červenỳ, V.; Pšenčík, I., Ray amplitudes of seismic body waves in laterally inhomogeneous media, Geophys. J. Int., 57, 91-106 (1979) · Zbl 0411.73083
[30] Virovlyansky, A., Ray travel times at long ranges in acoustic waveguides, J. Acoust. Soc. Am., 113, 2523-2532 (2003)
[31] Richards, P. G.; Aki, K., Quantitative Seismology: Theory and Methods (1980), Freeman
[32] Červený, V., Seismic Ray Theory (2005), Cambridge University Press · Zbl 0990.86001
[33] Um, J.; Thurber, C., A fast algorithm for two-point seismic ray tracing, Bull. Seismol. Soc. Am., 77, 972-986 (1987)
[34] Jensen, F. B.; Kuperman, W. A.; Porter, M. B.; Schmidt, H., Computational Ocean Acoustics (2000), Springer Science & Business Media
[35] Porter, M. B.; Bucker, H. P., Gaussian beam tracing for computing ocean acoustic fields, J. Acoust. Soc. Am., 82, 1349-1359 (1987)
[36] Runborg, O., Mathematical models and numerical methods for high frequency waves, Commun. Comput. Phys., 2, 827-880 (2007) · Zbl 1164.78300
[37] Sethian, J. A., A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci., 93, 1591-1595 (1996) · Zbl 0852.65055
[38] Sethian, J. A., Fast marching methods, SIAM Rev., 41, 199-235 (1999) · Zbl 0926.65106
[39] Vinje, V., Traveltime and amplitude estimation using wavefront construction, Geophysics, 58, 1157 (1993)
[40] Barton, G., Elements of Green’s Functions and Propagation: Potentials, Diffusion, and Waves (1989), Oxford University Press · Zbl 0682.35001
[41] Ascher, U. M.; Petzold, L. R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, vol. 61 (1998), Siam · Zbl 0908.65055
[42] Treeby, B. E.; Jaros, J.; Rendell, A. P.; Cox, B., Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method, J. Acoust. Soc. Am., 131, 4324-4336 (2012)
[43] Martin, E.; Ling, Y. T.; Treeby, B. E., Simulating focused ultrasound transducers using discrete sources on regular Cartesian grids, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63, 1535-1542 (2016)
[44] Demi, L.; Treeby, B.; Verweij, M., Comparison between two different full-wave methods for the computation of nonlinear ultrasound fields in inhomogeneous and attenuating tissue, (2014 IEEE International Ultrasonics Symposium (2014), IEEE), 1464-1467
[45] Robertson, J. L.; Cox, B. T.; Jaros, J.; Treeby, B. E., Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation, J. Acoust. Soc. Am., 141, 1726-1738 (2017)
[46] Robertson, J.; Martin, E.; Cox, B.; Treeby, B. E., Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps, Phys. Med. Biol., 62, 2559-2580 (2017)
[47] Wang, K.; Teoh, E.; Jaros, J.; Treeby, B. E., Modelling nonlinear ultrasound propagation in absorbing media using the k-wave toolbox: experimental validation, (2012 IEEE International Ultrasonics Symposium (2012), IEEE), 523-526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.