×

Structures of non-classical discontinuities in solutions of hyperbolic systems of equations. (English. Russian original) Zbl 1490.74064

Russ. Math. Surv. 77, No. 1, 47-79 (2022); translation from Usp. Mat. Nauk 77, No. 1, 55-90 (2022).
Summary: Discontinuity structures in solutions of a hyperbolic system of equations are considered. The system of equations has a rather general form and, in particular, can describe the longitudinal and torsional non-linear waves in elastic rods in the simplest setting and also one-dimensional waves in unbounded elastic media. The properties of discontinuities in solutions of these equations have been investigated earlier under the assumption that only the relations following from the conservation laws for the longitudinal momentum and angular momentum about the axis of the rod and the displacement continuity condition hold on the discontinuities. The shock adiabat has been studied. This paper deals with stationary discontinuity structures under the assumption that viscosity is the main governing mechanism inside the structure. Some segments of the shock adiabat are shown to correspond to evolutionary discontinuities without structure. It is also shown that there are special discontinuities on which an additional relation must hold, which arises from the condition that a discontinuity structure exists. The additional relation depends on the processes in the structure. Special discontinuities satisfy evolutionary conditions that differ from the well-known Lax conditions. Conclusions are discussed, which can also be of interest in the case of other systems of hyperbolic equations.

MSC:

74J40 Shocks and related discontinuities in solid mechanics
74J30 Nonlinear waves in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
35Q74 PDEs in connection with mechanics of deformable solids
35L67 Shocks and singularities for hyperbolic equations
Full Text: DOI

References:

[1] Ergashov, M., A study of the propagation of elastic waves in wound structures taking into account their rotation under extension, J. Appl. Math. Mech., 56, 1, 117-124 (1992) · Zbl 0788.73031 · doi:10.1016/0021-8928(92)90105-H
[2] Umarov, Kh. G.; Umarov, Kh. G., Cauchy problem for the torsional vibration equation of a nonlinear-elastic rod of infinite length. Cauchy problem for the torsional vibration equation of a nonlinear-elastic rod of infinite length, Prikl. Mat. Mekh.. Mech. Solids, 54, 5, 726-740 (2019) · Zbl 1459.74080 · doi:10.3103/S0025654419050194
[3] Erofeev, V. I.; Kazhaev, V. V.; ; Semerikova, N. P., Waves in rods. Dispersion. Dissipation. Nonlinearity, 208 pp. (2002), Fizmatlit: Fizmatlit, Moscow
[4] Erofeev, V. I.; Klyueva, N. V., Propagation of non-linear torsional waves in a rod of material of various modularity, Izv. Ross. Akad. Nauk Mekh. Tverdogo Tela, 5, 147-153 (2003)
[5] Sugimoto, N.; Yamane, Y.; ; Kakutani, T., Oscillatory structured shock waves in a nonlinear elastic rod with weak viscoelasticity, J. Appl. Mech., 51, 4, 766-772 (1984) · Zbl 0543.73023 · doi:10.1115/1.3167722
[6] Zhang, S.-Y.; Liu, S.-F., Three kinds of nonlinear dispersive waves in elastic rods with finite deformation, Appl. Math. Mech. (English Ed.), 29, 7, 909-917 (2008) · Zbl 1231.74278 · doi:10.1007/s10483-008-0709-2
[7] Singh, S. S., Soliton solutions of nonlinear wave equation in finite de-formation elastic cylindrical rod by solitary wave ansatz method, Int. J. Phys. Res., 4, 1, 12-14 (2016) · doi:10.14419/ijpr.v4i1.5823
[8] Malashin, A. A.; Malashin, A. A., Longitudinal, transverse, and torsion waves and oscillations in musical strings. Longitudinal, transverse, and torsion waves and oscillations in musical strings, Dokl. Ross. Akad. Nauk. Dokl. Phys., 54, 1, 43-46 (2009) · Zbl 1255.70020 · doi:10.1134/S102833580901011X
[9] Kulikovskii, A. G.; Chugainova, A. P.; Kulikovskii, A. G.; Chugainova, A. P., Long nonlinear waves in anisotropic cylinders. Long nonlinear waves in anisotropic cylinders, Zh. Vychisl. Mat. Mat. Fiz.. Comput. Math. Math. Phys., 57, 7, 1194-1200 (2017) · Zbl 1457.74103 · doi:10.1134/S0965542517070107
[10] Kulikovskii, A. G.; Chugainova, A. P.; Kulikovskii, A. G.; Chugainova, A. P., Shock waves in anisotropic cylinders. Shock waves in anisotropic cylinders, Current problems and methods in mechanics. Proc. Steklov Inst. Math., 300, 100-113 (2018), MAIK “Nauka/Interperiodika”: MAIK “Nauka/Interperiodika”, Moscow · Zbl 1452.74058 · doi:10.1134/S008154381801008X
[11] Chugainova, A. P.; Kulikovskii, A. G., Longitudinal and torsional shock waves in anisotropic elastic cylinders, Z. Angew. Math. Phys., 71, 1, 15 pp. (2020) · Zbl 1430.74067 · doi:10.1007/s00033-019-1234-8
[12] Landau, L. D.; Lifshitz, E. M.; Landau, L. D.; Lifshitz, E. M., Theoretical physics. Vol. 6. Course of theoretical physics. Vol. 6, Fluid mechanics, xiv+539 pp. (1987), Nauka: Nauka, Moscow: Pergamon Press, Nauka: Nauka, Moscow: Nauka: Nauka, Moscow: Pergamon Press, Nauka: Nauka, Moscow, Oxford
[13] Lax, P. D., Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10, 4, 537-566 (1957) · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[14] Kulikovskii, A. G.; Chugainova, A. P.; Kulikovskii, A. G.; Chugainova, A. P., Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory. Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory, Uspekhi Mat. Nauk. Russian Math. Surveys, 63, 2, 283-350 (2008) · Zbl 1155.74019 · doi:10.1070/RM2008v063n02ABEH004516
[15] LeFloch, P. G., Hyperbolic systems of conservation laws. The theory of classical and nonclassical shock waves, x+294 pp. (2002), Birkhäuser Verlag: Birkhäuser Verlag, Basel · Zbl 1019.35001 · doi:10.1007/978-3-0348-8150-0
[16] Bedjaoui, N.; LeFloch, P. G., Diffusive-dispersive travelling waves and kinetic relations. V. Singular diffusion and nonlinear dispersion, Proc. Roy. Soc. Edinburgh Sect. A, 134, 5, 815-843 (2004) · Zbl 1065.35182 · doi:10.1017/S0308210500003504
[17] Kulikovskii, A. G.; Pogorelov, N. V.; ; Semenov, A. Yu.; Kulikovskii, A. G.; Pogorelov, N. V.; ; Semenov, A. Yu., Mathematical aspects of numerical solution of hyperbolic systems. Mathematical aspects of numerical solution of hyperbolic systems, 118, xiv+540 pp. (2001), Fizmatlit: Fizmatlit, Moscow: Chapman & Hall/CRC, Fizmatlit: Fizmatlit, Moscow: Fizmatlit: Fizmatlit, Moscow: Chapman & Hall/CRC, Fizmatlit: Fizmatlit, Moscow, Boca Raton, FL · Zbl 0965.35001
[18] El, G. A.; Hoefer, M. A.; ; Shearer, M., Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws, SIAM Rev., 59, 1, 3-61 (2017) · Zbl 1364.35307 · doi:10.1137/15M1015650
[19] Jacobs, D.; McKinney, B.; ; Shearer, M., Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation, J. Differential Equations, 116, 2, 448-467 (1995) · Zbl 0820.35118 · doi:10.1006/jdeq.1995.1043
[20] Bertozzi, A. L.; M\"unch, A.; ; Shearer, M., Undercompressive shocks in thin film flows, Phys. D, 134, 4, 431-464 (1999) · Zbl 1076.76509 · doi:10.1016/S0167-2789(99)00134-7
[21] Hayes, B.; Shearer, M., Undercompressive shocks and Riemann problems for scalar conservation laws with non-convex fluxes, Proc. Roy. Soc. Edinburgh Sect. A, 129, 4, 733-754 (1999) · Zbl 0939.35121 · doi:10.1017/S0308210500013111
[22] Chugainova, A. P.; Shargatov, V. A., Traveling waves and undercompressive shocks in solutions of the generalized Korteweg-de Vries-Burgers equation with a time-dependent dissipation coefficient distribution, Eur. Phys. J. Plus, 135, 8, 18 pp. (2020) · doi:10.1140/epjp/s13360-020-00659-3
[23] Kulikovskii, A. G., Surfaces of discontinuity separating two perfect media of different properties. Recombination waves, Prikl. Mat. Mekh., 32, 6, 1125-1131 (1968) · Zbl 0187.25206
[24] Kulikovskii, A. G.; Kulikovskii, A. G., Strong discontinuities in flows of continuous media and their structure. Strong discontinuities in flows of continuous media and their structure, Probability theiry, theory of functions, and mechanics. Proc. Steklov Inst. Math., 182, 285-317 (1990), Nauka: Nauka, Moscow · Zbl 0712.76003
[25] Zel’dovich, Ya. B.; Barenblatt, G. I.; Librovich, V. B.; ; Makhviladze, G. M.; Zel’dovich, Ya. B.; Barenblatt, G. I.; Librovich, V. B.; ; Makhviladze, G. M., The mathematical theory of combustion and explosions. The mathematical theory of combustion and explosions, xxi+597 pp. (1985), Nauka: Nauka, Moscow: Consultants Bureau [Plenum], Nauka: Nauka, Moscow: Nauka: Nauka, Moscow: Consultants Bureau [Plenum], Nauka: Nauka, Moscow, New York
[26] Raizer, Yu. P., Laser spark and propagation of discharges, 308 pp. (1974), Nauka: Nauka, Moscow
[27] Freidin, A. B.; Vilchevskaya, E. N.; ; Korolev, I. K., Stress-assist chemical reactions front propagation in deformable solids, Internat. J. Eng. Sci., 83, 57-75 (2014) · Zbl 1423.74328 · doi:10.1016/j.ijengsci.2014.03.008
[28] Freidin, A. B.; Sharipova, L. L., Two-phase equilibrium microstructures against optimal composite microstructures, Arch. Appl. Mech., 89, 561-580 (2019) · doi:10.1007/s00419-019-01510-7
[29] Bedjaoui, N.; LeFloch, P. G., Diffusive-dispersive travelling waves and kinetic relations. II. A hyperbolic-elliptic model of phase-transition dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 132, 3, 545-565 (2002) · Zbl 1082.35104 · doi:10.1017/S0308210500001773
[30] Germain, P.; Lee, E. H., On shock waves in elastic-plastic solids, J. Mech. Phys. Solids, 21, 6, 359-382 (1973) · Zbl 0275.73017 · doi:10.1016/0022-5096(73)90006-9
[31] Sadovskii, V. M., Discontinuous solutions in problems in the dynamics of elastoplastic media, 208 pp. (1997), Nauka: Nauka, Moscow · Zbl 0897.73002
[32] Godunov, S. K.; Romenskii, E. I.; Godunov, S. K.; Romenskii, E. I., Elements of continuum mechanics and conservation laws. Elements of continuum mechanics and conservation laws, viii+258 pp. (2003), Nauchnaya Kniga: Nauchnaya Kniga, Novosibirsk: Kluwer Acad./Plenum Publ., Nauchnaya Kniga: Nauchnaya Kniga, Novosibirsk: Nauchnaya Kniga: Nauchnaya Kniga, Novosibirsk: Kluwer Acad./Plenum Publ., Nauchnaya Kniga: Nauchnaya Kniga, Novosibirsk, New York · Zbl 1031.74004 · doi:10.1007/978-1-4757-5117-8
[33] Godunov, S. K.; Peshkov, I. M.; Godunov, S. K.; Peshkov, I. M., Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium. Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium, Zh. Vychisl. Mat. Mat. Fiz.. Comput. Math. Math. Phys., 50, 8, 1409-1426 (2010) · Zbl 1224.74017 · doi:10.1134/S0965542510080117
[34] Favrie, N.; Gavrilyuk, S., Dynamics of shock waves in elastic-plastic solids, CANUM \(2010, 40^e\) Congrès National d’Analyse Numérique, 33, 50-67 (2011), EDP Sci.: EDP Sci., Les Ulis · Zbl 1302.74036 · doi:10.1051/proc/201133005
[35] Kulikovskii, A. G.; Chugainova, A. P.; Kulikovskii, A. G.; Chugainova, A. P., Study of discontinuities in solutions of the Prandtl-Reuss elastoplasticity equations. Study of discontinuities in solutions of the Prandtl-Reuss elastoplasticity equations, Zh. Vychisl. Mat. Mat. Fiz.. Comput. Math. Math. Phys., 56, 4, 637-649 (2016) · Zbl 1429.74060 · doi:10.1134/S0965542516040102
[36] Chugainova, A. P.; Kulikovskii, A. G., Shock waves in an incompressible anisotropic elastoplastic medium with hardening and their structures, Appl. Math. Comput., 401, 11 pp. (2021) · Zbl 1508.74038 · doi:10.1016/j.amc.2021.126077
[37] Kulikovskii, A. G.; Kulikovskii, A. G., A possible effect of oscillations in the structure of a discontinuity on the set of admissible discontinuities. A possible effect of oscillations in the structure of a discontinuity on the set of admissible discontinuities, Dokl. Akad. Nauk SSSR. Soviet Physics Dokl., 29, 4, 283-285 (1984)
[38] Chugainova, A. P.; Shargatov, V. A., Analytical description of the structure of special discontinuities described by a generalized KdV-Burgers equation, Commun. Nonlinear Sci. Numer. Simul., 66, 129-146 (2019) · Zbl 1455.76074 · doi:10.1016/j.cnsns.2018.06.008
[39] Shargatov, V. A.; Chugainova, A. P., Stability analysis of traveling wave solutions of a generalized Korteweg-de Vries-Burgers equation with variable dissipation parameter, J. Comput. Appl. Math., 397, 17 pp. (2021) · Zbl 1466.35081 · doi:10.1016/j.cam.2021.113654
[40] Kulikovskii, A. G.; Chugainova, A. P.; Kulikovskii, A. G.; Chugainova, A. P., Modeling the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena. Modeling the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena, Zh. Vychisl. Mat. Mat. Fiz.. Comput. Math. Math. Phys., 44, 6, 1062-1068 (2004) · Zbl 1136.35421
[41] Il’ichev, A. T.; Chugainova, A. P.; ; Shargatov, V. A.; Il’ichev, A. T.; Chugainova, A. P.; ; Shargatov, V. A., Spectral stability of special discontinuities. Spectral stability of special discontinuities, Dokl. Ross. Akad. Nauk. Dokl. Math., 91, 3, 347-351 (2015) · Zbl 1326.35316 · doi:10.1134/S1064562415030266
[42] Chugainova, A. P.; Shargatov, V. A.; Chugainova, A. P.; Shargatov, V. A., Stability of discontinuity structures described by a generalized KdV-Burgers equation. Stability of discontinuity structures described by a generalized KdV-Burgers equation, Zh. Vychisl. Mat. Mat. Fiz.. Comput. Math. Math. Phys., 56, 2, 263-277 (2016) · Zbl 1346.35178 · doi:10.1134/S0965542516020056
[43] Kulikovskii, A. G.; Chugainova, A. P.; ; Shargatov, V. A.; Kulikovskii, A. G.; Chugainova, A. P.; ; Shargatov, V. A., Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity. Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity, Zh. Vychisl. Mat. Mat. Fiz.. Comput. Math. Math. Phys., 56, 7, 1355-1362 (2016) · Zbl 1362.35069 · doi:10.1134/S0965542516070113
[44] Chugainova, A. P.; Il’ichev, A. T.; Kulikovskii, A. G.; ; Shargatov, V. A., Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: selection conditions for a unique solution, IMA J. Appl. Math., 82, 3, 496-525 (2017) · Zbl 1404.35082 · doi:10.1093/imamat/hxw061
[45] Gel’fand, I. M.; Gel’fand, I. M., Some problems in the theory of quasilinear equations. Some problems in the theory of quasilinear equations, Uspekhi Mat. Nauk, 29, 2-86, 295-381 (1963), Amer. Math. Soc.: Amer. Math. Soc., Providence, RI · Zbl 0127.04901 · doi:10.1090/trans2/029/12
[46] Barmin, A. A.; Kulikovskii, A. G., Shock wave which ionize a gas in an electromagnetic field, Dokl. Akad. Nauk SSSR, 178, 1, 55-58 (1968)
[47] Kulikovskii, A. G.; Sveshnikova, E. I.; Kulikovskii, A. G.; Sveshnikova, E. I., The formation of an anisotropic elastic medium on the compaction front of a stream of particles. The formation of an anisotropic elastic medium on the compaction front of a stream of particles, Prikl. Mat. Mekh.. J. Appl. Math. Mech., 79, 6, 521-530 (2015) · Zbl 1432.74050 · doi:10.1016/j.jappmathmech.2016.04.009
[48] Oleĭnik, O. A.; Oleĭnik, O. A., Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation, Uspekhi Mat. Nauk, 33, 2-86, 285-290 (1963), Amer. Math. Soc.: Amer. Math. Soc., Providence, RI · Zbl 0132.33303 · doi:10.1090/trans2/033/09
[49] Galin, G. Ya.; Galin, G. Ya., Shock waves in media with arbitrary equations of state. Shock waves in media with arbitrary equations of state, Dokl. Akad. Nauk SSSR. Soviet Physics Dokl., 119(3), 6, 244-247 (1958)
[50] Galin, G. Ya.; Galin, G. Ya., A theory of shock waves. A theory of shock waves, Dokl. Akad. Nauk SSSR. Soviet Physics Dokl., 4, 1, 757-760 (1960) · Zbl 0092.42901
[51] Kulikovskii, A. G.; Chugainova, A. P., Discontinuity structures of solutions of equations describing longitudinal-torsional waves in elastic rods, Dokl. Ross. Akad. Nauk Fiz. Tekhn. Nauki, 497, 1, 49-52 (2021) · doi:10.31857/S268674002102005X
[52] Sveshnikova, E. I.; Sveshnikova, E. I., Riemann waves in an elastic medium with small cubic anisotropy. Riemann waves in an elastic medium with small cubic anisotropy, Prikl. Mat. Mekh.. J. Appl. Math. Mech., 69, 1, 71-78 (2005) · Zbl 1100.74570 · doi:10.1016/j.jappmathmech.2005.01.007
[53] Sveshnikova, E. I.; Sveshnikova, E. I., Shock waves in an elastic medium with cubic anisotropy. Shock waves in an elastic medium with cubic anisotropy, Prikl. Mat. Mekh.. J. Appl. Math. Mech., 70, 4, 611-620 (2006) · Zbl 1126.76338 · doi:10.1016/j.jappmathmech.2006.09.012
[54] Sedov, L. I.; Sedov, L. I., Mechanics of continuous media. Vol. 1. Mechanics of continuous media. Vol. 1, 4, xx+614+I25 pp. (1997), Nauka: Nauka, Moscow: World Sci. Publ., Nauka: Nauka, Moscow: Nauka: Nauka, Moscow: World Sci. Publ., Nauka: Nauka, Moscow, River Edge, NJ · Zbl 0949.74500 · doi:10.1142/0712-vol1
[55] Kulikovskii, A.; Sveshnikova, E., Nonlinear waves in elastic media, x+237 pp. (1995), CRC Press: CRC Press, Boca Raton, FL · Zbl 0865.73004
[56] Kulikovskii, A. G.; Sveshnikova, E. I.; Kulikovskii, A. G.; Sveshnikova, E. I., On shock wave propagation in stressed isotropic nonlinearly elastic media. On shock wave propagation in stressed isotropic nonlinearly elastic media, Prikl. Mat. Mekh.. J. Appl. Math. Mech., 44, 3, 367-374 (1980) · Zbl 0484.73013 · doi:10.1016/0021-8928(80)90124-0
[57] Kulikovskii, A. G.; Sveshnikova, E. I.; Kulikovskii, A. G.; Sveshnikova, E. I., Investigation of the shock adiabat of quasitransverse shock waves in a prestressed elastic medium. Investigation of the shock adiabat of quasitransverse shock waves in a prestressed elastic medium, Prikl. Mat. Mekh.. J. Appl. Math. Mech., 46, 5, 667-673 (1982) · Zbl 0542.73024 · doi:10.1016/0021-8928(82)90017-X
[58] Akhiezer, A. I.; Liubarskii, G. Ia.; ; Polovin, R. V.; Akhiezer, A. I.; Liubarskii, G. Ia.; ; Polovin, R. V., The stability of shock waves in magnetohydrodynamics. The stability of shock waves in magnetohydrodynamics, Zh. Èksperiment. Teor. Fiz.. Soviet Physics JETP, 35, 8, 507-511 (1959) · Zbl 0085.21204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.