×

A sharp integral inequality for compact Weingarten hypersurfaces under an Okumura type inequality. (English) Zbl 1494.53052

In this paper, the authors provides a sharp integral inequality that involves the traceless second fundamental form of a compact linear Weingarten hypersurface immersed in a Riemannian space form. They show when equality occurs in this inequality, the hypersurface must be a totally umbilical sphere or a Clifford torus.

MSC:

53C24 Rigidity results
53C40 Global submanifolds
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
Full Text: DOI

References:

[1] L. J. Alías, S. C. García-Martínez and M. Rigoli, A maximum principle for hyper-surfaces with constant scalar curvature and applications, Ann. Glob. Anal. Geom. 41 (2012), 307-320. · Zbl 1237.53044
[2] L. J. Alías and J. Meléndez, Integral inequalities for compact hypersurfaces with con-stant scalar curvature in the Euclidean sphere, Mediterr. J. Math. 17 (2020), art. 61, 14 pp. · Zbl 1452.53051
[3] L. J. Alías, J. Meléndez and O. Palmas, Hypersurfaces with constant scalar curvature in space forms, Differential Geom. Appl. 58 (2018), 65-82. · Zbl 1387.53069
[4] C. P. Aquino, H. F. de Lima and M. A. L. Velásquez, A new characterization of complete linear Weingarten hypersurfaces in real space forms, Pacific J. Math. 261 (2013), 33-43. · Zbl 1273.53051
[5] C. P. Aquino, H. F. de Lima and M. A. L. Velásquez, Generalized maximum principles and the characterization of linear Weingarten hypersurfaces in space forms, Michigan Math. J. 63 (2014), 27-40. · Zbl 1304.53051
[6] A. Brasil Jr., A. G. Colares and O. Palmas, Complete hypersurfaces with constant scalar curvature in spheres, Monatsh. Math. 161 (2010), 369-380. · Zbl 1201.53068
[7] X. Chao and P. Wang, Linear Weingarten hypersurfaces in Riemannian space forms, Bull. Korean Math. Soc. 51 (2014), 567-577. · Zbl 1291.53067
[8] Q. M. Cheng, Hypersurfaces in a unit sphere S n+1 with constant scalar curvature, J. London Math. Soc. 64 (2001), 755-768. · Zbl 1023.53044
[9] Q. M. Cheng, Complete hypersurfaces in a Euclidean space R n+1 with constant scalar curvature, Indiana Univ. Math. J. 51 (2002), 53-68. · Zbl 1043.53045
[10] S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195-204. · Zbl 0349.53041
[11] E. L. de Lima and H. F. de Lima, Complete Weingarten hypersurfaces satisfying an Okumura type inequality, J. Austral. Math. Soc. 109 (2020), 81-92. · Zbl 1442.53032
[12] J. N. Gomes, H. F. de Lima and M. A. L. Velásquez, Complete hypersurfaces with two distinct principal curvatures in a space form, Results Math. 67 (2015), 457-470. · Zbl 1318.53064
[13] Z. Hu and S. Zhai, Hypersurfaces of the hyperbolic space with constant scalar curva-ture, Results Math. 48 (2005), 65-88. · Zbl 1092.53032
[14] H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), 665-672. · Zbl 0864.53040
[15] H. Li, Global rigidity theorems of hypersurfaces, Ark. Mat. 35 (1997), 327-351. · Zbl 0920.53028
[16] H. Li, Y. J. Suh and G. Wei, Linear Weingarten hypersurfaces in a unit sphere, Bull. Korean Math. Soc. 46 (2009), 321-329. · Zbl 1165.53361
[17] J. Meléndez, Rigidity theorems for hypersurfaces with constant mean curvature, Bull. Brazil. Math. Soc. 45 (2014), 385-404. · Zbl 1319.53065
[18] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental ten-sor, Amer. J. Math. 96 (1974), 207-213. · Zbl 0302.53028
[19] Q. L. Wang and C. Y. Xia, Rigidity theorems for closed hypersurfaces in space forms, Quart. J. Math. Oxford Ser. 56 (2005), 101-110. · Zbl 1085.53033
[20] G. Wei and Y. J. Suh, Rigidity theorems for hypersurfaces with constant scalar cur-vature in a unit sphere, Glasgow Math. J. 49 (2007), 235-241. · Zbl 1139.53030
[21] Cajazeiras, Paraíba, Brazil E-mail: eudes.leite@professor.ufcg.edu.br
[22] Henrique F. de Lima
[23] Campina Grande, Paraíba, Brazil E-mail: henrique@mat.ufcg.edu.br
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.