×

Transitivity and homogeneity of orthosets and inner-product spaces over subfields of \(\mathbb{R}\). (English) Zbl 1496.81024

Summary: An orthoset (also called an orthogonality space) is a set \(X\) equipped with a symmetric and irreflexive binary relation \(\perp\), called the orthogonality relation. In quantum physics, orthosets play an elementary role. In particular, a Hilbert space gives rise to an orthoset in a canonical way and can be reconstructed from it. We investigate in this paper the question to which extent real Hilbert spaces can be characterised as orthosets possessing suitable types of symmetries. We establish that orthosets fulfilling a transitivity as well as a certain homogeneity property arise from (anisotropic) Hermitian spaces. Moreover, restricting considerations to divisible automorphisms, we narrow down the possibilities to positive definite quadratic spaces over an ordered field. We eventually show that, under the additional requirement that the action of these automorphisms is quasiprimitive, the scalar field embeds into \({{\mathbb{R}}} \).

MSC:

81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
06C15 Complemented lattices, orthocomplemented lattices and posets
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
32M12 Almost homogeneous manifolds and spaces
11E88 Quadratic spaces; Clifford algebras

References:

[1] Baer, R., Linear Algebra and Projective Geometry (1952), New York: Academic Press, New York · Zbl 0049.38103
[2] Birkhoff, G.; von Neumann, J., The logic of quantum mechanics, Ann. Math., 37, 823-843 (1936) · JFM 62.1061.04 · doi:10.2307/1968621
[3] Brunet, O., Orthogonality and dimensionality, Axioms, 2, 477-489 (2013) · Zbl 1295.81015 · doi:10.3390/axioms2040477
[4] Bruns, G.; Harding, J.; Coecke, B.; Moore, D.; Wilce, A., Algebraic aspects of orthomodular lattices, Current Research in Operational Quantum Logic. Algebras, Categories, Languages, 37-65 (2000), Dordrecht: Kluwer, Dordrecht · Zbl 0955.06003 · doi:10.1007/978-94-017-1201-9_2
[5] Dacey, J.R.: Orthomodular spaces. Ph.D. Thesis, University of Massachusetts, Amherst (1968)
[6] Engesser, K.; Gabbay, DM; Lehmann, D., Handbook of Quantum Logic and Quantum Structures—Quantum Structures (2007), Amsterdam: Elsevier, Amsterdam · Zbl 1119.81005
[7] Erné, M.; Mynard, F.; Pearl, E., Closure, Beyond Topology, 163-238 (2009), Providence: American Mathematical Society, Providence · Zbl 1192.54001 · doi:10.1090/conm/486/09510
[8] Faure, C-A; Frölicher, A., Dualities for infinite-dimensional projective geometries, Geom. Dedic., 56, 225-236 (1995) · Zbl 0836.51002 · doi:10.1007/BF01263563
[9] Faure, C-A; Frölicher, A., Modern Projective Geometry (2000), Dordrecht: Kluwer, Dordrecht · Zbl 0972.51001 · doi:10.1007/978-94-015-9590-2
[10] Finch, PD, Orthogonality relations and orthomodularity, Bull. Aust. Math. Soc., 2, 125-128 (1970) · Zbl 0179.03401 · doi:10.1017/S0004972700041678
[11] Fuchs, L., Partially Ordered Algebraic Systems (1963), Oxford: Pergamon Press, Oxford · Zbl 0137.02001
[12] Grove, LC, Classical Groups and Geometric Algebra (2001), Providence: American Mathematical Society, Providence · Zbl 0990.20001 · doi:10.1090/gsm/039
[13] Hedlíková, J.; Pulmannová, S., Orthogonality spaces and atomistic orthocomplemented lattices, Czech. Math. J., 41, 8-23 (1991) · Zbl 0790.06009 · doi:10.21136/CMJ.1991.102428
[14] Holland, SS, \( \star \)-valuations and ordered \(\star \)-fields, Trans. Am. Math. Soc., 262, 219-243 (1980) · Zbl 0482.12009
[15] Holland, SS, Orthomodularity in infinite dimensions; a theorem of M. Solèr, Bull. Am. Math. Soc. New Ser., 32, 205-234 (1995) · Zbl 0856.11021 · doi:10.1090/S0273-0979-1995-00593-8
[16] Jones, VFR, Quantum mechanics over fields of non-zero characteristic, Lett. Math. Phys., 1, 99-103 (1976) · doi:10.1007/BF00398370
[17] Kalmbach, G., Orthomodular Lattices (1983), London: Academic Press, London · Zbl 0512.06011
[18] MacLaren, MD, Atomic orthocomplemented lattices, Pac. J. Math., 14, 597-612 (1964) · Zbl 0122.02201 · doi:10.2140/pjm.1964.14.597
[19] Maeda, F.; Maeda, S., Theory of Symmetric Lattices (1970), Berlin: Springer, Berlin · Zbl 0219.06002 · doi:10.1007/978-3-642-46248-1
[20] Mayet, R., Some characterizations of the underlying division ring of a Hilbert lattice by automorphisms, Int. J. Theor. Phys., 37, 109-114 (1998) · Zbl 0904.06009 · doi:10.1023/A:1026669407606
[21] Paseka, J.; Vetterlein, T., Categories of orthogonality spaces, J. Pure Appl. Algebra, 226, 106859 (2022) · Zbl 1499.81009 · doi:10.1016/j.jpaa.2021.106859
[22] Piziak, R., Orthomodular lattices and quadratic spaces: a survey, Rock. Mt. J. Math., 21, 951-992 (1991) · Zbl 0767.06010
[23] Praeger, CE, An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. Lond. Math. Soc., II, 47, 227-239 (1993) · Zbl 0738.05046 · doi:10.1112/jlms/s2-47.2.227
[24] Prestel, A., Lectures on Formally Real Fields (1984), Berlin: Springer, Berlin · Zbl 0548.12011 · doi:10.1007/BFb0101548
[25] Roddy, MS, An orthomodular lattice, Algebra Univ., 29, 564-579 (1992) · Zbl 0767.06011 · doi:10.1007/BF01190782
[26] Rump, W., Symmetric quantum sets and L-algebras, Int. Math. Res. Not. (2020) · Zbl 1485.81039 · doi:10.1093/imrn/rnaa135
[27] Vetterlein, T., Orthogonality spaces of finite rank and the complex Hilbert spaces, Int. J. Geom. Methods Mod. Phys., 16, 1950080 (2019) · Zbl 1421.81010 · doi:10.1142/S0219887819500804
[28] Vetterlein, T., Gradual transitions in orthogonality spaces of finite rank, Aequ. Math. (2020) · Zbl 1498.46026 · doi:10.1007/s00010-020-00756-9
[29] Wilbur, WJ, On characterizing the standard quantum logics, Trans. Am. Math. Soc., 233, 265-282 (1977) · Zbl 0366.06019 · doi:10.1090/S0002-9947-1977-0468710-X
[30] Wilce, A.: Test spaces, in [6], pp. 443-549 · Zbl 1273.81025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.