×

On the maximal extension in the mixed ultradifferentiable weight sequence setting. (English) Zbl 1496.26042

Summary: For the ultradifferentiable weight sequence setting it is known that the Borel map which assigns to each function the infinite jet of derivatives (at \(0)\) is surjective onto the corresponding weighted sequence class if and only if the sequence is strongly nonquasianalytic for both the Roumieu- and Beurling-type classes. Sequences which are nonquasianalytic but not strongly nonquasianalytic admit a controlled loss of regularity and we determine the maximal sequence for which such a mixed setting is possible for both types, hence get information on the controlled loss of surjectivity in this situation. Moreover, we compare the optimal sequences for both mixed strong nonquasianalyticity conditions arising in the literature.

MSC:

26E10 \(C^\infty\)-functions, quasi-analytic functions
46A13 Spaces defined by inductive or projective limits (LB, LF, etc.)
46E10 Topological linear spaces of continuous, differentiable or analytic functions

References:

[1] L. Bernal-González, D. Pellegrino, and J. B. Seoane-Sepúlveda, Linear subsets of nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. 51 (2014), 71-130. · Zbl 1292.46004
[2] J. Bonet, R. Meise, and S. N. Melikhov, A comparison of two different ways to define classes of ultradifferentiable functions, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 424-444. · Zbl 1165.26015
[3] J. Bonet, R. Meise, and B. A. Taylor, On the range of the Borel map for classes of non-quasianalytic functions in: Progress in Functional Analysis, North-Holland Math. Stud. 170, North-Holland, 1992, 97-111. · Zbl 0769.46008
[4] L. Carleson, On universal moment problems, Math. Scand. 9 (1961), 197-206. · Zbl 0114.05903
[5] J. Chaumat et A.-M. Chollet, Surjectivité de l’application restriction à un compact dans les classes de fonctions ultradifférentiables, Math. Ann. 298 (1994), 7-40. · Zbl 0791.46017
[6] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley, New York, 1970. · Zbl 0195.10401
[7] C. Esser and G. Schindl, How far is the Borel map from being surjective in quasian-alytic ultradifferentiable classes?, J. Math. Anal. Appl. 466 (2018), 986-1008. · Zbl 1398.46031
[8] C. Esser and G. Schindl, On the construction of large algebras not contained in the image of the Borel map, Res. Math. 75 (2020), art. 22, 37 pp. · Zbl 1442.46020
[9] L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Springer, 2003. · Zbl 1028.35001
[10] J. Jiménez-Garrido, J. Sanz, and G. Schindl, Injectivity and surjectivity of the asymp-totic Borel map in Carleman ultraholomorphic classes, J. Math. Anal. Appl. 469 (2019), 136-168. · Zbl 1403.30012
[11] J. Jiménez-Garrido, J. Sanz, and G. Schindl, The surjectivity of the Borel mapping in the mixed setting for ultradifferentiable ramification spaces, Monatsh. Math. 191 (2020), 537-576. · Zbl 1462.26033
[12] J. Jiménez-Garrido, J. Sanz, and G. Schindl, Ultraholomorphic extension theorems in the mixed setting, Banach J. Math. Anal. 14 (2020), 1630-1669. · Zbl 1446.30052
[13] A. Kiro, Taylor coefficients of smooth functions, J. Anal. Math. 142 (2020), 193-269. · Zbl 1461.30009
[14] H. Komatsu, Ultradistributions. I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25-105. · Zbl 0258.46039
[15] S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, Paris, 1952. · Zbl 0048.05203
[16] H.-J. Petzsche, On E. Borel’s theorem, Math. Ann. 282 (1988), 299-313. · Zbl 0633.46033
[17] A. Rainer and G. Schindl, Composition in ultradifferentiable classes, Studia Math. 224 (2014), 97-131. · Zbl 1318.26053
[18] A. Rainer and G. Schindl, Equivalence of stability properties for ultradifferentiable function classes, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A. Mat. RACSAM 110 (2016), 17-32. · Zbl 1339.26078
[19] A. Rainer and G. Schindl, Extension of Whitney jets of controlled growth, Math. Nachr. 290 (2017), 2356-2374. · Zbl 1375.26043
[20] A. Rainer and G. Schindl, On the Borel mapping in the quasianalytic setting, Math. Scand. 121 (2017), 293-310. · Zbl 1378.26027
[21] A. Rainer and G. Schindl, On the extension of Whitney ultrajets, Studia Math. 245 (2019), 255-287. · Zbl 1411.26022
[22] A. Rainer and G. Schindl, On the extension of Whitney ultrajets, II, Studia Math. 250 (2020), 283-295. · Zbl 1435.26036
[23] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987. · Zbl 0925.00005
[24] G. Schindl, Spaces of smooth functions of Denjoy-Carleman-type, 2009, Diploma The-sis, Univ. Wien; http://othes.univie.ac.at/7715/1/2009-11-18_0304518.pdf.
[25] J. Schmets and M. Valdivia, Extension maps in ultradifferentiable and ultraholomor-phic function spaces, Studia Math. 143 (2000), 221-250. · Zbl 0972.46013
[26] J. Schmets and M. Valdivia, On certain extension theorems in the mixed Borel setting, J. Math. Anal. Appl. 297 (2003), 384-403. · Zbl 1073.46015
[27] V. Thilliez, On quasianalytic local rings, Expo. Math. 26 (2008), 1-23. · Zbl 1139.32003
[28] A-1090 Wien, Austria E-mail: gerhard.schindl@univie.ac.at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.