×

A multiscale failure modeling framework for strain localization in quasi-brittle materials. (English) Zbl 07488885

Summary: Macroscale mesh sensitivity and RVE size dependence are the two major issues that make the conventional homogenization techniques incapable of modeling the softening behavior of quasi-brittle materials. In this paper, a new continuous-discontinuous multiscale modeling approach to failure is presented. Inspired by the classical crack band model of Z. P. Bažant and B. H. Oh [“Crack band theory for fracture of concrete”, Matériaux et construction 16, No. 3, 155–177 (1983; doi:10.1007/BF02486267)], this approach is built upon an extended computational homogenization (CH) scheme for representing the macroscale crack behavior. During the multiscale computation, once a macroscale material point loses its stability with the XFEM, a new crack segment represented is inserted for which cohesive RVE models using the extended CH and with copied initial states are coupled to crack integration points. In the extended CH, the macroscale strain applied to the boundary of the cohesive RVE model is enriched with a macroscale discontinuity related term regularized with the effective length of the microscale localization band. This helps alleviate the RVE size dependency of the homogenized cohesive response. The weakly periodic BCs that are aligned with the localization direction are employed to minimize spurious boundary effects. Several numerical examples are provided to demonstrate the effectiveness of this framework, with a comparison against direct numerical simulations.

MSC:

74-XX Mechanics of deformable solids
82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Alfano, G. and Crisfield, M. [2003]. “ Solution strategies for the delamination analysis based on a combination of local-control arc-length and line searches,” Int. J. Numer. Methods Eng.58(7), 999-1048. · Zbl 1032.74660
[2] Bansal, M., Singh, I., Mishra, B. and Bordas, S. [2019] “ A parallel and efficient multi-split xfem for 3-d analysis of heterogeneous materials,” Comput. Methods Appl. Mech. Eng.347, 365-401. · Zbl 1440.74373
[3] Bažant, Z. P. and Oh, B. H. [1983] “ Crack band theory for fracture of concrete,” Matériaux et construction, 16(3), 155-177.
[4] Belytschko, T., Loehnert, S. and Song, J.-H. [2008] “ Multiscale aggregating discontinuities: A method for circumventing loss of material stability,” Int. J. Numer. Methods Eng.73(6), 869-894. · Zbl 1195.74008
[5] Bobiński, J. and Tejchman, J. [2016] “ A coupled constitutive model for fracture in plain concrete based on continuum theory with non-local softening and extended finite element method,” Finite Elements Anal. Des.114, 1-21.
[6] Bosco, E., Kouznetsova, V. and Geers, M. [2015] “ Multi-scale computational homogenization-localization for propagating discontinuities using x-fem,” Int. J. Numer. Methods Eng.102(3-4), 496-527. · Zbl 1352.65470
[7] Červenka, J., Červenka, V. and Laserna, S. [2018] “ On crack band model in finite element analysis of concrete fracture in engineering practice,” Eng. Fracture Mech.197, 27-47.
[8] Chen, L., Liu, G. and Zeng, K. [2011] “ A combined extended and edge-based smoothed finite element method (es-xfem) for fracture analysis of 2d elasticity,” Int. J. Comput. Methods8(04), 773-786. · Zbl 1245.74081
[9] Coenen, E., Kouznetsova, V., Bosco, E. and Geers, M. [2012a] “ A multi-scale approach to bridge microscale damage and macroscale failure: A nested computational homogenization-localization framework,” Int. J. Fracture178(1-2), 157-178.
[10] Coenen, E., Kouznetsova, V. and Geers, M. [2012b] “ Novel boundary conditions for strain localization analyses in microstructural volume elements,” Int. J. Numer. Methods Eng.90(1), 1-21. · Zbl 1242.74083
[11] De Borst, R. [1987] “ Computation of post-bifurcation and post-failure behavior of strain-softening solids,” Comput. Struct.25(2), 211-224. · Zbl 0603.73046
[12] Feyel, F. and Chaboche, J.-L. [2000] “ Fe2 multiscale approach for modeling the elastoviscoplastic behavior of long fibre sic/ti composite materials,” Comput. Methods Appl. Mech. Eng.183(3-4), 309-330. · Zbl 0993.74062
[13] Garg, S. and Pant, M. [2018] “ Meshfree methods: A comprehensive review of applications,” Int. J. Comput. Methods15(4), 1830001. · Zbl 1404.74199
[14] Geers, M., Kouznetsova, V. and Brekelmans, W. [2001] “ Gradient-enhanced computational homogenization for the micro-macro scale transition,” Le Journal de Physique IV11(PR5), Pr5-145.
[15] Geers, M. G., Kouznetsova, V. G. and Brekelmans, W. [2010] “ Multi-scale computational homogenization: Trends and challenges,” J. Comput. Appl. Math.234(7), 2175-2182. · Zbl 1402.74107
[16] Gitman, I., Askes, H. and Sluys, L. [2007] “ Representative volume: existence and size determination,” Eng. Fracture Mech.74(16), 2518-2534.
[17] Gitman, I., Askes, H. and Sluys, L. [2008] “ Coupled-volume multi-scale modelling of quasi-brittle material,” Eur. J. Mech.-A/Solids27(3), 302-327. · Zbl 1154.74377
[18] Goldmann, J., Brummund, J. and Ulbricht, V. [2018] “ On boundary conditions for homogenization of volume elements undergoing localization,” Int. J. Numer. Methods Eng.113(1), 1-21. · Zbl 07867253
[19] Guidault, P.-A., Allix, O., Champaney, L. and Navarro, J.-P. [2007] “ A two-scale approach with homogenization for the computation of cracked structures,” Comput. Struct.85(17-18), 1360-1371.
[20] Gutiérrez, M. A. [2004] “ Energy release control for numerical simulations of failure in quasi-brittle solids,” Commun. Numer. Methods Eng.20(1), 19-29. · Zbl 1047.74551
[21] Hettich, T., Hund, A. and Ramm, E. [2008] “ Modeling of failure in composites by x-fem and level sets within a multiscale framework,” Comput. Methods Appl. Mech. Eng.197(5), 414-424. · Zbl 1169.74543
[22] Hill, R. [1963] “ Elastic properties of reinforced solids: Some theoretical principles,” J. Mech. Phys. Solids11(5), 357-372. · Zbl 0114.15804
[23] Hirschberger, C., Ricker, S., Steinmann, P. and Sukumar, N. [2009] “ Computational multiscale modelling of heterogeneous material layers,” Eng. Fracture Mech.76(6), 793-812.
[24] Hughes, T. J., Feijóo, G. R., Mazzei, L. and Quincy, J.-B. [1998] “ The variational multiscale method-a paradigm for computational mechanics,” Comput. Methods Appl. Mech. Eng.166(1-2), 3-24. · Zbl 1017.65525
[25] Hund, A. and Ramm, E. [2007] “ Locality constraints within multiscale model for non-linear material behavior,” Int. J. Numer. Methods Eng.70(13), 1613-1632. · Zbl 1194.74412
[26] Jirásek, M. [2004] Modeling of localized inelastic deformation: Lecture notes, Czech Technical University, Prague.
[27] Kachanov, L. [2013] Introduction to Continuum Damage Mechanics, Vol. 10. Springer Science & Business Media. · Zbl 0596.73091
[28] Kaczmarczyk, Ł., Pearce, C. J. and Bićanić, N. [2008] “ Scale transition and enforcement of rve boundary conditions in second-order computational homogenization,” Int. J. Numer. Methods Eng.74(3), 506-522. · Zbl 1159.74403
[29] Kaczmarczyk, Ł., Pearce, C. J. and Bićanić, N. [2010a] “ Studies of microstructural size effect and higher-order deformation in second-order computational homogenization,” Comput. Struct.88(23-24), 1383-1390.
[30] Kaczmarczyk, Ł., Pearce, C. J., Bićanić, N. and de Souza Neto, E. [2010b] “ Numerical multiscale solution strategy for fracturing heterogeneous materials,” Comput. Methods Appl. Mech. Eng.199(17-20), 1100-1113. · Zbl 1227.74077
[31] Kerfriden, P., Paladim, D. A., García, J. J. R. and Bordas, S. P.-A. [2013] “ A posteriori error estimation for pod-based reduced order modelling with application in homogenization”.
[32] Kolymbas, D. [2009] “ Kinematics of shear bands,” Acta Geotechnica, 4(4), 315.
[33] Kouznetsova, V., Brekelmans, W. and Baaijens, F. [2001] “ An approach to micro-macro modeling of heterogeneous materials,” Comput. Mech.27(1), 37-48. · Zbl 1005.74018
[34] Kouznetsova, V., Geers, M. and Brekelmans, W. [2004] “ Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy,” Comput. Methods Appl. Mech. Eng.193(48-51), 5525-5550. · Zbl 1112.74469
[35] Larsson, F., Runesson, K., Saroukhani, S. and Vafadari, R. [2011] “ Computational homogenization based on a weak format of micro-periodicity for rve-problems,” Comput. Methods Appl. Mech. Eng.200(1-4) :11-26. · Zbl 1225.74069
[36] Lloberas-Valls, O., Rixen, D., Simone, A. and Sluys, L. [2012] “ Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials,” Int. J. Numer. Methods Eng.89(11), 1337-1366. · Zbl 1242.74138
[37] Loehnert, S. and Belytschko, T. [2007] “ A multiscale projection method for macro/microcrack simulations,” Int. J. Numer. Methods Eng.71(12), 1466-1482. · Zbl 1194.74436
[38] Ma, G., An, X. and He, L. [2010] “ The numerical manifold method: A review,” International Journal of Computational Methods, 7(01) :1-32. · Zbl 1267.74129
[39] Massart, T., Peerlings, R. and Geers, M. [2007] “ An enhanced multi-scale approach for masonry wall computations with localization of damage,” Int. J. Numer. Methods Eng.69(5), 1022-1059. · Zbl 1194.74283
[40] Matouš, K., Geers, M. G., Kouznetsova, V. G. and Gillman, A. [2017] “ A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials,” J. Comput. Phys.330, 192-220.
[41] Matouš, K., Kulkarni, M. G. and Geubelle, P. H. [2008] “ Multiscale cohesive failure modeling of heterogeneous adhesives,” J. Mech. Phys. Solids56(4), 1511-1533. · Zbl 1171.74433
[42] Mergheim, J. [2009] “ A variational multiscale method to model crack propagation at finite strains,” Int. J. Numer. Methods Eng.80(3), 269-289. · Zbl 1176.74189
[43] Miehe, C., Schröder, J. and Becker, M. [2002] “ Computational homogenization analysis in finite elasticity: Material and structural instabilities on the micro-and macro-scales of periodic composites and their interaction,” Comput. Methods Appl. Mech. Eng.191(44), 4971-5005. · Zbl 1099.74517
[44] Miehe, C., Welschinger, F. and Hofacker, M. [2010] “ Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations,” Int. J. Numer. Methods Eng.83(10), 1273-1311. · Zbl 1202.74014
[45] Nguyen, G. D., Einav, I. and Korsunsky, A. M. [2012a] “ How to connect two scales of behavior in constitutive modelling of geomaterials,” Géotechnique Lett.2(3), 129-134.
[46] Nguyen, V. P., Lloberas-Valls, O., Stroeven, M. and Sluys, L. J. [2010] “ On the existence of representative volumes for softening quasi-brittle materials-a failure zone averaging scheme,” Comput. Methods Appl. Mech. Eng.199(45-48), 3028-3038. · Zbl 1231.74372
[47] Nguyen, V. P., Lloberas-Valls, O., Stroeven, M. and Sluys, L. J. [2011] “ Homogenization-based multiscale crack modelling: From micro-diffusive damage to macro-cracks,” Comput. Methods Appl. Mech. Eng.200(9-12), 1220-1236. · Zbl 1225.74070
[48] Nguyen, V. P., Lloberas-Valls, O., Stroeven, M. and Sluys, L. J. [2012b] “ Computational homogenization for multiscale crack modeling. implementational and computational aspects,” Int. J. Numer. Methods Eng.89(2), 192-226. · Zbl 1242.74085
[49] Nguyen, V. P., Stroeven, M. and Sluys, L. J. [2012c] “ An enhanced continuous-discontinuous multiscale method for modeling mode-i cohesive failure in random heterogeneous quasi-brittle materials,” Eng. Fracture Mech.79, 78-102.
[50] Nguyen, V. P., Stroeven, M. and Sluys, L. J. [2012d] “ Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations,” Comput. Methods Appl. Mech. Eng.201, 139-156. · Zbl 1239.74086
[51] Oliver, J. [1989] “ A consistent characteristic length for smeared cracking models,” Int. J. Numer. Methods Eng.28(2), 461-474. · Zbl 0676.73066
[52] Oliver, J., Caicedo, M., Huespe, A. E., Herná ndez, J. and Roubin, E. [2017] “ Reduced order modeling strategies for computational multiscale fracture,” Comput. Methods Appl. Mech. Eng.313, 560-595. · Zbl 1439.74365
[53] Oliver, J., Caicedo, M., Roubin, E., Huespe, A. E. and Hernández, J. [2015] “ Continuum approach to computational multiscale modeling of propagating fracture,” Comput. Methods Appl. Mech. Eng.294, 384-427. · Zbl 1423.74062
[54] Oliver, J., Cervera, M., Oller, S. and Lubliner, J. [1990] “ Isotropic damage models and smeared crack analysis of concrete,” in Proc. SCI-C Computer Aided Analysis and Design of Concrete Structures, Vol. 945958.
[55] Peerlings, R., Geers, M., De Borst, R. and Brekelmans, W. [2001] “ A critical comparison of nonlocal and gradient-enhanced softening continua,” Int. J. Solids Struct.38(44-45), 7723-7746. · Zbl 1032.74008
[56] Peerlings, R. d., De Borst, R., Brekelmans, W. d. and De Vree, J. [1996] “ Gradient enhanced damage for quasi-brittle materials,” Int. J. Numer. Methods Eng.39(19), 3391-3403. · Zbl 0882.73057
[57] Petracca, M., Pelà, L., Rossi, R., Oller, S., Camata, G. and Spacone, E. [2016] “ Regularization of first order computational homogenization for multiscale analysis of masonry structures,” Comput. Mech.57(2), 257-276. · Zbl 1359.74358
[58] Pijaudier-Cabot, G. and Bažant, Z. P. [1987] “ Nonlocal damage theory,” J. Eng. Mech.113(10), 1512-1533.
[59] Pouplana Sarda, I. D. [2016] “ Combination of a non-local damage model for quasi-brittle materials with a mesh-adaptive finite element technique,” Finite Elements Anal. Des.112, 26-39.
[60] Rabczuk, T. [2013] “ Computational methods for fracture in brittle and quasi-brittle solids: State-of-the-art review and future perspectives,” ISRN Appl. Math., 2013. · Zbl 1298.74002
[61] Reis, F. and Pires, F. A. [2013] “ An adaptive sub-incremental strategy for the solution of homogenization-based multi-scale problems,” Comput. Methods Appl. Mech. Eng.257, 164-182. · Zbl 1286.74085
[62] Riks, E. [1979] “ An incremental approach to the solution of snapping and buckling problems,” Int. J. Solids Struct.15(7), 529-551. · Zbl 0408.73040
[63] Rots, J., Nauta, P., Kuster, G. and Blaauwendraad, J. [1985] “ Smeared crack approach and fracture localization in concrete,” HERON30(1).
[64] Siddiqui, M. and Arif, A. F. M. [2017] “ A computational approach for the constitutive modeling of elastoplastic behavior of metal matrix composites,” Int. J. Comput. Methods14(05), 1750058. · Zbl 1404.74172
[65] Skoček, J. and Stang, H. [2008] “ Inverse analysis of the wedge-splitting test,” Eng. Fracture Mech.75(10), 3173-3188.
[66] Smit, R., Brekelmans, W. and Meijer, H. [1999] “ Prediction of the large-strain mechanical response of heterogeneous polymer systems: Local and global deformation behavior of a representative volume element of voided polycarbonate,” J. Mech. Phys. Solids47(2), 201-221. · Zbl 0980.74011
[67] Somer, D. D., de Souza Neto, E., Dettmer, W. and Perić, D. [2009] “ A sub-stepping scheme for multi-scale analysis of solids,” Comput. Methods Appl. Mech. Eng.198(9-12), 1006-1016. · Zbl 1229.74119
[68] Souza, F. V. and Allen, D. H. [2011] “ Modeling the transition of microcracks into macrocracks in heterogeneous viscoelastic media using a two-way coupled multiscale model,” Int. J. Solids Struct.48(22-23), 3160-3175.
[69] Svenning, E., Fagerström, M. and Larsson, F. [2016] “ On computational homogenization of microscale crack propagation,” Int. J. Numer. Methods Eng.108(1), 76-90. · Zbl 1425.74394
[70] Svenning, E., Fagerström, M. and Larsson, F. [2017a] “ Localization aligned weakly periodic boundary conditions,” Int. J. Numer. Methods Eng.111(5), 493-500. · Zbl 07867108
[71] Svenning, E., Larsson, F. and Fagerström, M. [2017b] “ Two-scale modeling of fracturing solids using a smeared macro-to-micro discontinuity transition,” Comput. Mech.60(4), 627-641. · Zbl 1386.74129
[72] Svenning, E., Larsson, F. and Fagerström, M. [2019] “ A two-scale modeling framework for strain localization in solids: Xfem procedures and computational aspects,” Comput. Struct.211, 43-54.
[73] Terada, K., Hori, M., Kyoya, T. and Kikuchi, N. [2000] “ Simulation of the multi-scale convergence in computational homogenization approaches,” Int. J. Solids Struct.37(16), 2285-2311. · Zbl 0991.74056
[74] Toro, S., Sánchez, P. J., Blanco, P. J., de Souza Neto, E., Huespe, A. E. and Feijóo, R. [2016] “ Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales,” Int. J. Plasticity76, 75-110.
[75] Toro, S., Sánchez, P. J., Huespe, A. E., Giusti, S. M., Blanco, P. J. and Feijóo, R. [2014] “ A two-scale model for heterogeneous materials: Numerical implementation based on the finite element method,” Int. J. Numer. Methods Eng.97(5), 313-351. · Zbl 1352.74028
[76] Turteltaub, S., van Hoorn, N., Westbroek, W. and Hirsch, C. [2018] “ Multiscale analysis of mixed-mode fracture and effective traction-separation relations for composite materials,” J. Mech. Phys. Solids117, 88-109.
[77] Unger, J. F. [2013] “ An fe2-x1 approach for multiscale localization phenomena,” J. Mech. Phys. Solids61(4), 928-948.
[78] Van der Meer, F. P. [2012] “ Mesolevel modeling of failure in composite laminates: Constitutive, kinematic and algorithmic aspects,” Arch. Comput. Methods Eng.19(3), 381-425. · Zbl 1354.74015
[79] Van der Sluis, O., Schreurs, P., Brekelmans, W. and Meijer, H. [2000] “ Overall behavior of heterogeneous elastoviscoplastic materials: Effect of microstructural modelling,” Mech. Mater.32(8), 449-462.
[80] Verhoosel, C. V., Remmers, J. J. and Gutiérrez, M. A. [2009] “ A dissipation-based arc-length method for robust simulation of brittle and ductile failure,” Int. J. Numer. Methods Eng.77(9), 1290-1321. · Zbl 1156.74397
[81] Verhoosel, C. V., Remmers, J. J., Gutiérrez, M. A. and De Borst, R. [2010] “ Computational homogenization for adhesive and cohesive failure in quasi-brittle solids,” Int. J. Numer. Methods Eng.83(8-9), 1155-1179. · Zbl 1197.74139
[82] Wells, G. N. and Sluys, L. [2001] “ A new method for modelling cohesive cracks using finite elements,” Int. J. Numer. Methods Eng.50(12), 2667-2682. · Zbl 1013.74074
[83] Wu, J.-Y., Nguyen, V. P., Nguyen, C. T., Sutula, D., Bordas, S. and Sinaie, S. [2018] “ Phase field modeling of fracture,” Adv. Appl. Mech., Multi-scale Theory Comput.52, 1-183.
[84] Xi, X., Yang, S., Hu, X. and Li, C.-Q. [2020] “ Computational determination of interface fracture properties for concrete by inverse analysis,” ACI Mater. J.117(6), 43-53.
[85] Yvonnet, J., Gonzalez, D. and He, Q.-C. [2009] “ Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials,” Comput. Methods Appl. Mech. Eng.198(33-36), 2723-2737. · Zbl 1228.74067
[86] Zienkiewicz, O. C. and Zhu, J. Z. [1987] “ A simple error estimator and adaptive procedure for practical engineerng analysis,” Int. J. Numer. Methods Eng.24(2), 337-357. · Zbl 0602.73063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.