×

KMS spectra for group actions on compact spaces. (English) Zbl 1494.46065

Summary: Given a topologically free action of a countable group \(G\) on a compact metric space \(X\), there is a canonical correspondence between continuous \(1\)-cocycles for this group action and diagonal 1-parameter groups of automorphisms of the reduced crossed product \(C^*\)-algebra. The KMS spectrum is defined as the set of inverse temperatures for which there exists a KMS state. We prove that the possible KMS spectra depend heavily on the nature of the acting group \(G\). For groups of subexponential growth, we prove that the only possible KMS spectra are \(\{0\},[0,+\infty),(-\infty,0]\) and \(\mathbb{R}\). For certain wreath product groups, which are amenable and of exponential growth, we prove that any closed subset of \(\mathbb{R}\) containing zero arises as KMS spectrum. Finally, for certain nonamenable groups including the free group with infinitely many generators, we prove that any closed subset may arise. Besides uncovering a surprising relation between geometric group theoretic properties and KMS spectra, our results provide two simple \(C^*\)-algebras with the following universality property: any closed subset (containing, resp. not containing zero) arises as the KMS spectrum of a \(1\)-parameter group of automorphisms of this \(C^*\)-algebra.

MSC:

46L55 Noncommutative dynamical systems
46L30 States of selfadjoint operator algebras
20F65 Geometric group theory
46L40 Automorphisms of selfadjoint operator algebras

References:

[1] an Huef, A.; Laca, M.; Raeburn, I.; Sims, A., KMS states on the \(C^*\)-algebras of reducible graphs, Ergod. Theory Dyn. Syst, 35, 2535-2558 (2015) · Zbl 1348.46067 · doi:10.1017/etds.2014.52
[2] Afsar, Z.; Larsen, N.; Neshveyev, S., KMS states on Nica-Toeplitz \(C^*\)-algebras, Commun. Math. Phys., 378, 1875-1929 (2020) · Zbl 1462.46069 · doi:10.1007/s00220-020-03711-6
[3] Boivin, D.; Derriennic, Y., The ergodic theorem for additive cocycles of \(\mathbb{Z}^d\) or \(\mathbb{R}^d\), Ergod. Theory Dyn. Syst., 11, 19-39 (1991) · Zbl 0723.60008 · doi:10.1017/S014338570000599X
[4] Bratteli, O.; Elliott, GA; Herman, RH, On the possible temperatures of a dynamical system, Commun. Math. Phys., 74, 281-295 (1980) · Zbl 0437.46059 · doi:10.1007/BF01952891
[5] Bratteli, O.; Elliott, G.; Kishimoto, A., The temperature state space of a dynamical system I, J. Yokohama Univ., 28, 125-167 (1980) · Zbl 0466.46057
[6] Bratteli, O.; Robinson, DW, Operator Algebras and Quantum Statistical Mechanics I, II (1981), Berlin: Springer, Berlin · Zbl 0463.46052 · doi:10.1007/978-3-662-09089-3
[7] Christensen, J., Thomsen, K.: KMS states on the crossed product \(C^*\)-algebra of a homeomorphism. Ergod. Theory Dyn. Syst. (to appear). arXiv:1912.06069
[8] Denker, M.; Urbanski, M., On the existence of conformal measures, Trans. Am. Math. Soc., 328, 563-587 (1991) · Zbl 0745.58031 · doi:10.1090/S0002-9947-1991-1014246-4
[9] Kumjian, A.; Renault, J., KMS states on \(C^*\)- algebras associated to expansive maps, Proc. Am. Math. Soc., 134, 2067-2078 (2006) · Zbl 1099.46040 · doi:10.1090/S0002-9939-06-08214-1
[10] Neshveyev, S., KMS states on the \(C^*\)-algebras of non-principal groupoids, J. Operator Theory, 70, 513-530 (2011) · Zbl 1299.46067 · doi:10.7900/jot.2011sep20.1915
[11] Olesen, D.; Pedersen, GK, Some \(C^*\)-dynamical systems with a single KMS state, Math. Scand., 42, 111-118 (1978) · Zbl 0382.46028 · doi:10.7146/math.scand.a-11740
[12] Renault, J., A Groupoid Approach to \(C^*\)-Algebras (1980), Berlin: Springer, Berlin · Zbl 0433.46049 · doi:10.1007/BFb0091072
[13] Thomsen, K., KMS weights on graph \(C^*\)-algebras, Adv. Math., 309, 334-391 (2017) · Zbl 1358.81120 · doi:10.1016/j.aim.2017.01.024
[14] Thomsen, K., Phase transition in the CAR algebra, Adv. Math., 372, 27 (2020) · Zbl 07232826 · doi:10.1016/j.aim.2020.107312
[15] Thomsen, K.: On the possible temperatures for flows on a UHF algebra. arXiv:2012.03306 · Zbl 1482.46084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.