×

Modular categories with transitive Galois actions. (English) Zbl 1483.18021

Modular categories are spherical braided fusion categories over \(\mathbb{C}\) whose braidings are nondegenerate. There have been efforts on classifying modular categories by rank [P. Bruillard et al., J. Pure Appl. Algebra 220, No. 6, 2364–2388 (2016; Zbl 1332.18011); Int. Math. Res. Not. 2016, No. 24, 7546–7588 (2016; Zbl 1404.18016); E. Rowell et al., Commun. Math. Phys. 292, No. 2, 343–389 (2009; Zbl 1186.18005)], Frobenius-Perron dimension [P. Bruillard et al., Can. Math. Bull. 57, No. 4, 721–734 (2014; Zbl 1342.18013); Proc. Am. Math. Soc. 147, No. 1, 21–34 (2019; Zbl 1403.18006)] and Frobenius-Schur exponent [P. Bruillard and E. C. Rowell, Proc. Am. Math. Soc. 140, No. 4, 1141–1150 (2012; Zbl 1262.18005); Z. Wan and Y. Wang, Algebra Colloq. 28, No. 1, 39–50 (2021; Zbl 1452.18022)]. There are finitely many modular categories up to equivalence for any given rank [P. Bruillard et al., J. Am. Math. Soc. 29, No. 3, 857–881 (2016; Zbl 1344.18008)]. The number of Galois orbits plays prominents roles in most of these papers [D. Green, “Classification of rank 6 modular categories with Galois group \(\langle(012)(345)\rangle\)”, Preprint, arXiv:1908.07128; D. Creamer, “A computational approach to classifying low rank modular categories”, Preprint, arXiv:1912.02269], leading to the idea of classifying modular categories by the number of Galois orbits.
The principal objective in this paper is to study modular categories whose Galois group action on their simple objects are transitive, so that they are called transitive modular categories. A synopsis of the paper goes as follows.
§ 2
sets up notation, giving a brief review on modular categories.
§ 3
defines transitive modular categories, deducing some fundamental properties of them. The prime factorization theorem (Theorem 3.11) claiming that any transitive modular category has a unique factorization into a Deligne product of prime transitive modular categories is established.
§ 4
addresses the prime and transitive modular categories obtained from the quantum group categories \(\mathcal{C}(\mathfrak{sl}_{2},p-2)\) for any odd prime \(p\). It is shown that for any prime \(p\geq5\), every Galois conjugate of \(\mathcal{C}(\mathfrak{sl}_{2},p-2)^{(0)}\) is prime and transitive.
§ 5
studies the modular group representations associated with modular categories. It is shown (Theorem 5.14) that the representations associated with transitive modular categories are irreducible and minimal.
§ 6
characterizes the prime transitive modular categories (Theorem 6.4), leading to the complete classification of transitive modular categories (Theorem 6.5).
§ 7
introduces transitive super-modular categories, studying them. The authors classify split transitive super-modular categories (Theorem 7.4), establishing a unique factorization theorem of transitive super-modular categories (Theorem 7.13). The authors exhibit a family of non-split transitive prime categories over \(\mathrm{sVec}\), conjecturing that these are all the s-simple transitive super-modular categories up to Galois conjugate.

MSC:

18M20 Fusion categories, modular tensor categories, modular functors

References:

[1] Andersen, HH, Tensor products of quantized tilting modules, Commun. Math. Phys., 149, 1, 149-159 (1992) · Zbl 0760.17004
[2] Andersen, HH; Paradowski, J., Fusion categories arising from semisimple Lie algebras, Commun. Math. Phys., 169, 3, 563-588 (1995) · Zbl 0827.17010
[3] Bakalov, B.; Kirillov, A. Jr, Lectures on Tensor Categories and Modular Functors (2001), Providence: American Mathematical Society, Providence · Zbl 0965.18002
[4] Blanchet, C.; Habegger, N.; Masbaum, G.; Vogel, P., Three-manifold invariants derived from the Kauffman bracket, Topology, 31, 4, 685-699 (1992) · Zbl 0771.57004
[5] Blanchet, C.; Habegger, N.; Masbaum, G.; Vogel, P., Topological quantum field theories derived from the Kauffman bracket, Topology, 34, 4, 883-927 (1995) · Zbl 0887.57009
[6] Bruguières, A., Catégories prémodulaires, modularisations et invariants des variétés de dimension 3, Math. Ann., 316, 2, 215-236 (2000) · Zbl 0943.18004
[7] Bruillard, P.; Galindo, C.; Hagge, T.; Ng, S-H; Plavnik, JY; Rowell, EC; Wang, Z., Fermionic modular categories and the 16-fold way, J. Math. Phys., 58, 4, 31 (2017) · Zbl 1365.81098
[8] Bruillard, P.; Galindo, C.; Hong, S-M; Kashina, Y.; Naidu, D.; Natale, S.; Plavnik, JY; Rowell, EC, Classification of integral modular categories of Frobenius-Perron dimension \(pq^4\) and \(p^2 q^2\), Can. Math. Bull., 57, 4, 721-734 (2014) · Zbl 1342.18013
[9] Bruillard, P.; Galindo, C.; Ng, S-H; Plavnik, JY; Rowell, EC; Wang, Z., On the classification of weakly integral modular categories, J. Pure Appl. Algebra, 220, 6, 2364-2388 (2016) · Zbl 1332.18011
[10] Bruillard, P.; Ng, S-H; Rowell, EC; Wang, Z., On classification of modular categories by rank, Int. Math. Res. Not. IMRN, 2016, 24, 7546-7588 (2016) · Zbl 1404.18016
[11] Bruillard, P.; Ng, S-H; Rowell, EC; Wang, Z., Rank-finiteness for modular categories, J. Am. Math. Soc., 29, 3, 857-881 (2016) · Zbl 1344.18008
[12] Bruillard, P.; Plavnik, JY; Rowell, EC, Modular categories of dimension \(p^3m\) with \(m\) square-free, Proc. Am. Math. Soc., 147, 1, 21-34 (2019) · Zbl 1403.18006
[13] Bruillard, P.; Rowell, EC, Modular categories, integrality and Egyptian fractions, Proc. Am. Math. Soc., 140, 4, 1141-1150 (2012) · Zbl 1262.18005
[14] Bruillard, P., Plavnik, J.Y., Rowell, E.C., Zhang, Q.: On classification of super-modular categories of rank 8. J. Algebra Appl. 20(1), Article ID 2140017 (2021) · Zbl 1507.18022
[15] Coste, A.; Gannon, T., Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B, 323, 3-4, 316-321 (1994)
[16] Creamer, D.: A computational approach to classifying low rank modular tensor categories. PhD thesis, Texas A&M University (2018)
[17] Davydov, A.; Müger, M.; Nikshych, D.; Ostrik, V., The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math., 677, 135-177 (2013) · Zbl 1271.18008
[18] Davydov, A.; Nikshych, D.; Ostrik, V., On the structure of the Witt group of braided fusion categories, Sel. Math. (N.S.), 19, 1, 237-269 (2013) · Zbl 1345.18005
[19] de Boer, J.; Goeree, J., Markov traces and \({{\rm II}}_1\) factors in conformal field theory, Commun. Math. Phys., 139, 2, 267-304 (1991) · Zbl 0760.57002
[20] Deligne, P.: Catégories tannakiennes. In: The Grothendieck Festschrift, vol. II. Progress in Mathematics, vol. 87, pp. 111-195. Birkhäuser Boston (1990) · Zbl 0727.14010
[21] Deligne, P., Catégories tensorielles, Mosc. Math. J., 2, 2, 227-248 (2002) · Zbl 1005.18009
[22] Dong, C.; Lin, X.; Ng, S-H, Congruence property in conformal field theory, Algebra Number Theory, 9, 9, 2121-2166 (2015) · Zbl 1377.17025
[23] Drinfeld, V.; Gelaki, S.; Nikshych, D.; Ostrik, V., On braided fusion categories: I, Sel. Math. (N.S.), 16, 1, 1-119 (2010) · Zbl 1201.18005
[24] Dummit, DS; Foote, RM, Abstract Algebra (2004), Hoboken: Wiley, Hoboken · Zbl 1037.00003
[25] Eholzer, W., Fusion algebras induced by representations of the modular group, Int. J. Mod. Phys. A, 8, 20, 3495-3507 (1993) · Zbl 0984.81534
[26] Eholzer, W., On the classification of modular fusion algebras, Commun. Math. Phys., 172, 3, 623-659 (1995) · Zbl 0884.17018
[27] Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories (2015), Providence: American Mathematical Society, Providence · Zbl 1365.18001
[28] Etingof, P.; Nikshych, D.; Ostrik, V., On fusion categories, Ann. Math. (2), 162, 2, 581-642 (2005) · Zbl 1125.16025
[29] Freedman, MH; Walker, K.; Wang, Z., Quantum \({{\rm SU}}(2)\) faithfully detects mapping class groups modulo center, Geom. Topol., 6, 523-539 (2002) · Zbl 1037.57024
[30] Fröhlich, J., Kerler, T.: Quantum Groups, Quantum Categories and Quantum Field Theory. Lecture Notes in Mathematics, vol. 1542. Springer, Berlin (1993) · Zbl 0789.17005
[31] Gelaki, S.; Nikshych, D., Nilpotent fusion categories, Adv. Math., 217, 3, 1053-1071 (2008) · Zbl 1168.18004
[32] Green, D.: Classification of rank 6 modular categories with galois group \(\langle (012)(345)\rangle \). arXiv preprint arXiv:1908.07128 (2019)
[33] Jones, VFR, Hecke algebra representations of braid groups and link polynomials, Ann. Math., 126, 2, 335-388 (1987) · Zbl 0631.57005
[34] Kassel, C., Quantum Groups (1995), New York: Springer, New York · Zbl 0808.17003
[35] Kirillov, A. Jr; Ostrik, V., On a \(q\)-analogue of the McKay correspondence and the ADE classification of \({\mathfrak{sl}}_2\) conformal field theories, Adv. Math., 171, 2, 183-227 (2002) · Zbl 1024.17013
[36] Moore, G., Seiberg, N.: Lectures on RCFT. In: Physics, Geometry, and Topology (Banff, AB, 1989). NATO Advanced Science Institutes Series B: Physics, vol. 238, pp. 263-361. Plenum, New York (1990) · Zbl 0985.81740
[37] Müger, M., From subfactors to categories and topology I Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra, 180, 1-2, 81-157 (2003) · Zbl 1033.18002
[38] Müger, M., From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra, 180, 1-2, 159-219 (2003) · Zbl 1033.18003
[39] Müger, M., On the structure of modular categories, Proc. Lond. Math. Soc. (3), 87, 2, 291-308 (2003) · Zbl 1037.18005
[40] Ng, S.-H., Rowell, E.C., Wang, Y., Zhang, Q.: Higher central charges and Witt groups. arXiv e-prints. arXiv:2002.03570v2 (2020)
[41] Ng, S-H; Schauenburg, P., Frobenius-Schur indicators and exponents of spherical categories, Adv. Math., 211, 1, 34-71 (2007) · Zbl 1138.16017
[42] Ng, S.-H., Schauenburg, P.: Higher Frobenius-Schur indicators for pivotal categories. In: Hopf Algebras and Generalizations. Contemporary Mathematics, vol. 441, pp. 63-90. American Mathematical Society, Providence (2007) · Zbl 1153.18008
[43] Ng, S-H; Schauenburg, P., Congruence subgroups and generalized Frobenius-Schur indicators, Commun. Math. Phys., 300, 1, 1-46 (2010) · Zbl 1206.18007
[44] Ng, S-H; Schopieray, A.; Wang, Y., Higher Gauss sums of modular categories, Sel. Math. (N.S.), 25, 4, 1-32 (2019) · Zbl 1430.18015
[45] Nobs, A., Die irreduziblen Darstellungen der Gruppen \({\text{SL}}_2({\mathbb{Z}}_p)\), insbesondere \({\text{ SL }}_2({\mathbb{Z}}_2): I\), Comment. Math. Helv., 51, 4, 465-489 (1976) · Zbl 0346.20022
[46] Nobs, A.; Wolfart, J., Die irreduziblen Darstellungen der Gruppen \({\text{ SL }}_2({\mathbb{Z}}_p)\), insbesondere \({\text{ SL }}_2({\mathbb{Z}}_p)\): II, Comment. Math. Helv., 51, 4, 491-526 (1976) · Zbl 0346.20023
[47] Reshetikhin, N.; Turaev, VG, Invariants of \(3\)-manifolds via link polynomials and quantum groups, Invent. Math., 103, 3, 547-597 (1991) · Zbl 0725.57007
[48] Rowell, E.; Stong, R.; Wang, Z., On classification of modular tensor categories, Commun. Math. Phys., 292, 2, 343-389 (2009) · Zbl 1186.18005
[49] Rowell, E.C.: From quantum groups to unitary modular tensor categories. In: Representations of Algebraic Groups, Quantum Groups, and Lie Algebras. Contemporary Mathematics, vol. 413, pp. 215-230. American Mathematical Society, Providence (2006) · Zbl 1156.18302
[50] Rowell, EC; Wang, Z., Mathematics of topological quantum computing, Bull. Am. Math. Soc. (N.S.), 55, 2, 183-238 (2018) · Zbl 1437.81005
[51] Turaev, V.; Wenzl, H., Quantum invariants of \(3\)-manifolds associated with classical simple Lie algebras, Int. J. Math., 4, 2, 323-358 (1993) · Zbl 0784.57007
[52] Turaev, VG, Quantum Invariants of Knots and 3-Manifolds (2010), Berlin: Walter de Gruyter & Co., Berlin · Zbl 1213.57002
[53] Vafa, C., Toward classification of conformal theories, Phys. Lett. B, 206, 3, 421-426 (1988)
[54] Wan, Z.; Wang, Y., Classification of spherical fusion categories of Frobenius-Schur exponent 2, Algebra Colloq., 28, 1, 39-50 (2021) · Zbl 1452.18022
[55] Wang, Z.: Topological Quantum Computation. CBMS Regional Conference Series in Mathematics, vol. 112. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (2010) · Zbl 1239.81005
[56] Wen, X-G, Theory of the edge states in fractional quantum Hall effects, Int. J. Mod. Phys. B, 6, 1711-1762 (1992)
[57] Wielandt, H.: Finite Permutation Groups. Translated from the German by R. Bercov. Academic Press, New York (1964) · Zbl 0138.02501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.