×

Relaxing solitons of a biaxial ferromagnet. (English. Russian original) Zbl 1489.82094

Theor. Math. Phys. 210, No. 1, 46-67 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 54-79 (2022).
Summary: We use the Riemann problem on a torus to obtain and analyze new analytic solutions of the Landau-Lifshitz model that describe the nonlinear dynamics of solitons of a biaxial ferromagnet in the field of dispersive spin waves. We show that nonlinear interference of solitons and waves leads to nonadiabatic relaxation oscillations of solitons. Formulas are obtained that determine the changes in the frequency and velocity of solitons in the radiation field. Collisions of relaxing solitons on a spin-wave background are analyzed.

MSC:

82D40 Statistical mechanics of magnetic materials
35C08 Soliton solutions
35C07 Traveling wave solutions
35B40 Asymptotic behavior of solutions to PDEs
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q82 PDEs in connection with statistical mechanics

Software:

MuMax
Full Text: DOI

References:

[1] Landau, L. D.; Lifshitz, E. M., Electrodynamics of Continuous Media (1984), Oxford-London-New York-Paris: Pergamon Press, Oxford-London-New York-Paris
[2] Lifshitz, E. M.; Pitaevskii, L. P., Statistical Physics. Part 2. Theory of the Condensed State (1980), Oxford: Pergamon Press, Oxford
[3] Landau, L. D., Collected Papers of L. D. Landau (1965), Oxford: Pergamon Press, Oxford
[4] Braun, W. F., Micromangetics (1963), New York-London: Wiley, New York-London
[5] Vonsovskii, S. V., Magnetism (1984), Moscow: Nauka, Moscow
[6] E. K. Sklyanin, On complete integrability of the Landau-Lifshitz equation (Preprint LOMI E-79-3), LOMI, Leningrad (1979). · Zbl 0449.35089
[7] Kosevich, A. M.; Ivanov, B. A.; Kovalev, A. S., Nonlinear Magnetization Waves. Dynamic and Topological Solitons (1983), Kiev: Naukova Dumka, Kiev
[8] Kosevich, A. M.; Ivanov, B. A.; Kovalev, A. S., Magnetic solitons, J. Phys. Rep., 194, 117-238 (1990) · doi:10.1016/0370-1573(90)90130-T
[9] Borisov, A. B.; Kiselev, V. V., Quasi-One-Dimensional Magnetic Solitons (2014), Moscow: Fizmatlit, Moscow
[10] Borisov, A. B.; Kiselev, V. V., Dynamical solitons for a quasi-one-dimensional ferromagnet with easy plane-type anisotropy, Phys. D, 19, 411-422 (1986) · doi:10.1016/0167-2789(86)90067-9
[11] Yaremchuk, A. I., Interaction of domain wall with a spin wave in the framework of an integrable case of the Landau-Lifshitz equations, Theoret. and Math. Phys., 62, 101-105 (1985) · doi:10.1007/BF01034832
[12] Kiselev, V. V.; Raskovalov, A. A., Forced motion of breathers and domain boundaries against the background of nonlinear magnetization wave, Chaos, Solitons and Fractals, 45, 1551-1565 (2012) · Zbl 1284.35403 · doi:10.1016/j.chaos.2012.09.004
[13] Kuznetsov, E. A.; Mikhailov, A. V., Relaxation oscillations of solitons, JETP Lett., 60, 486-490 (1994)
[14] Kuznetsov, E. A.; Mikhailov, A. V.; Shimokhin, I. A., Nonlinear interaction of solitons and radiation, Phys. D, 87, 201-215 (1995) · Zbl 1194.78030 · doi:10.1016/0167-2789(95)00149-X
[15] Kiselev, V. V.; Raskovalov, A. A.; Batalov, S. V., Nonlinear interactions of domain walls and breathers with a spin-wave field, Chaos, Solitons and Fractals, 127, 217-225 (2019) · doi:10.1016/j.chaos.2019.06.013
[16] Bikbaev, R. F.; Its, A. R., Asymptotics at \(t\to\infty\) of the solution of the Cauchy problem for the Landau-Lifshitz equation, Theoret. and Math. Phys., 76, 665-675 (1988) · doi:10.1007/BF01029424
[17] Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problem. Asymptotic for the MKdV equation, Ann. Math., 137, 295-368 (1993) · Zbl 0771.35042 · doi:10.2307/2946540
[18] Deift, P.; Its, A.; Zhou, X., Long-time asymptotics for integrable nonlinear wave equations, Important Developments of Soliton Theory, 0, 181-204 (1993) · Zbl 0926.35132 · doi:10.1007/978-3-642-58045-1_10
[19] Akhiezer, N. I., Elements of the Theory of Elliptic Functions (1990), Providence, RI: AMS, Providence, RI · Zbl 0694.33001 · doi:10.1090/mmono/079
[20] Bateman, H.; Erdélyi, A., Higher Transcendental Functions (1955), New York-Toronto-London: McGraw-Hill, New York-Toronto-London · Zbl 0143.29202
[21] Byrd, P. F.; Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists (1971), New York: Springer, New York · Zbl 0213.16602 · doi:10.1007/978-3-642-65138-0
[22] Mikhailov, A. V., The Landau-Lifshitz equation and the Riemann-boundary problem on a torus, Phys. Lett., 92, 51-55 (1982) · doi:10.1016/0375-9601(82)90289-4
[23] Rodin, Yu. L., The Riemann boundary problem and the inverse scattering problem for the Landau-Lifshitz equation, Phys. D, 11, 90-108 (1984) · Zbl 0582.58017 · doi:10.1016/0167-2789(84)90437-8
[24] Mikhailov, A. V., Integrable magnetic models, Solitons, 17, 623-690 (1986) · doi:10.1016/B978-0-444-87002-5.50019-9
[25] Bateman, H.; Erdélyi, A., Higher Transcendental Functions (1974), New York-Toronto-London: McGraw-Hill, New York-Toronto-London · Zbl 0143.29202
[26] Novikov, S. P.; Manakov, S. V.; Pitaevskii, L. P.; Zakharov, V. E., Theory of Solitons. The Inverse Scattering Methods (1984), New York: Consultants Bureau, New York · Zbl 0598.35002
[27] Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Waeyenberge, B. Van, The design and verification of MuMax3, AIP Adv., 4 (2014) · doi:10.1063/1.4899186
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.