×

The general fifth-order nonlinear Schrödinger equation with nonzero boundary conditions: inverse scattering transform and multisoliton solutions. (English. Russian original) Zbl 1486.81103

Theor. Math. Phys. 210, No. 1, 8-30 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 11-37 (2022).
Summary: We study the inverse scattering transform of the general fifth-order nonlinear Schrödinger (NLS) equation with nonzero boundary conditions (NZBCs), which can be reduced to several integrable equations. First, a matrix Riemann-Hilbert problem (RHP) for the fifth-order NLS equation with NZBCs at infinity is systematically investigated. Moreover, the inverse problems are solved by studying a matrix RHP. We construct the general solutions for reflectionless potentials. The trace formulas and theta conditions are also presented. In particular, we analyze the simple-pole and double-pole solutions for the fifth-order NLS equation with NZBCs. Finally, we discuss the dynamics of the obtained solutions in terms of their plots. The results in this work should be helpful in explaining and enriching the nonlinear wave phenomena in nonlinear fields.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
81U40 Inverse scattering problems in quantum theory
35C08 Soliton solutions
35Q15 Riemann-Hilbert problems in context of PDEs
35G31 Initial-boundary value problems for nonlinear higher-order PDEs
70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
81Q80 Special quantum systems, such as solvable systems

References:

[1] Yang, G.; Shen, Y. R., Spectral broadening of ultrashort pulses in a nonlinear medium, Opt. Lett., 9, 510-512 (1984)
[2] Anderson, D.; Lisak, M., Nonlinear asymmetric self-phase modulation and self-steepending of pulses in long optical waveguides, Phys. Rev. A, 27, 1393-1398 (1983)
[3] Sasa, N.; Satsuma, J., New-type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Japan, 60, 409-417 (1981) · Zbl 0920.35128
[4] Kano, T., Normal form of nonlinear Schrödinger equation, J. Phys. Soc. Japan, 58, 4322-4328 (1989)
[5] Chowdury, A.; Kedziora, D. J.; Ankiewicz, A.; Akhmediev, N., Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms, Phys. Rev. E, 90 (2014) · Zbl 1374.35381
[6] Chen, S. Y.; Yan, Z. Y., The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform, breathers, and rogons, Phys. Lett. A, 15 (2019) · Zbl 1476.81033
[7] Prinari, B.; Demontis, F.; Li, S.; Horikis, T. P., Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions, Phys. D, 368, 22-49 (2018) · Zbl 1381.35114
[8] Ablowitz, M. J.; Biondini, G.; Prinari, B., Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions, Inverse Problems, 23, 1711-1758 (2009) · Zbl 1127.35059
[9] Biondini, G.; Kovačič, G.; Gregor, G., Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 55 (2014) · Zbl 1298.35187
[10] Pichler, M.; Biondini, G., On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles, IMA J. Appl. Math., 82, 131-151 (2017) · Zbl 1406.35368
[11] Demontis, F.; Prinari, B.; Mee, C. van der; Vitale, F., The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions, Stud. Appl. Math., 131, 1-40 (2013) · Zbl 1311.35277
[12] Prinari, B.; Vitale, F., Inverse scattering transform for the focusing nonlinear Schrödinger equation with one-sided nonzero boundary condition, Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations, 651, 157-194 (2015) · Zbl 1346.35188
[13] Demontis, F.; Prinari, B.; Mee, C. van der; Vitale, F., The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions, J. Math. Phys., 55 (2014) · Zbl 1366.35165
[14] Biondini, G.; Fagerstrom, E.; Prinari, B., Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions, Phys. D, 333, 117-136 (2016) · Zbl 1415.35217
[15] Ablowitz, M. J.; Feng, Bao-Feng; Luo, X.; Musslimani, Z., Inverse scattering transform for the nonlocal reverse space-time nonlinear Schrödinger equation, Theoret. and Math. Phys., 196, 1241-1267 (2018) · Zbl 1408.35169
[16] Zhang, G. Q.; Yan, Z. Y., Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions, Phys. D, 402 (2020) · Zbl 1453.37069
[17] Zhang, G. Q.; Chen, S. Y.; Yan, Z. Y., Focusing and defocusing Hirota equations with non-zero boundary conditions: inverse scattering transforms and soliton solutions, Commun. Nonlinear Sci. Numer. Simul., 80 (2020) · Zbl 1450.35297
[18] Wang, X. B.; Han, B., Characteristics of rogue waves on a soliton background in the general three-component nonlinear Schrödinger equation, Appl. Math. Mod., 88, 688-700 (2020) · Zbl 1481.35358
[19] Wang, X.-B.; Han, B., Inverse scattering transform of an extended nonlinear Schrödinger equation with nonzero boundary conditions and its multisoliton solutions, J. Math. Anal. Appl., 487 (2020) · Zbl 1435.35361
[20] Prinari, P.; Biondini, G.; Trubatch, A. D., Inverse scattering transform for the multi-component nonlinear Schrödinger equation with nonzero boundary conditions, Stud. Appl. Math., 126, 245-302 (2011) · Zbl 1218.35251
[21] Hirota, R., Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14, 805-809 (1973) · Zbl 0257.35052
[22] He, J. S.; Wang, L. H.; Li, L. J.; Porsezian, K.; Erdélyi, R., Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation, Phys. Rev. E, 89 (2014)
[23] Tian, S. F., Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1377.37100
[24] Lakshmanan, M.; Porsezian, K.; Daniel, M., Effect of discreteness on the continuum limit of the Heisenberg spin chain, Phys. Lett. A, 133, 483-488 (1988)
[25] Ankiewicz, A.; Soto-Crespo, J. M.; Akhmediev, N., Rogue waves and rational solutions of the Hirota equation, Phys. Rev. E, 81 (2010)
[26] Geng, X. G.; Zhai, Y. Y.; Dai, H. H., Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy, Adv. Math., 263, 123-153 (2014) · Zbl 1304.37046
[27] Porsezian, K.; Daniel, M.; Lakshmanan, M., On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain, J. Math. Phys., 33, 1807-1816 (1992) · Zbl 1112.82309
[28] Peng, W.-Q.; Tian, S.-F.; Wang, X.-B.; Zhang, T.-T., Characteristics of rogue waves on a periodic background for the Hirota equation, Wave Motion, 93 (2020) · Zbl 1524.35596
[29] Wang, X.-B.; Tian, S.-F.; Zhang, T.-T., Characteristics of the breather and rogue waves in a \((2+1)\)-dimensional nonlinear Schrödinger equation, Proc. Amer. Math. Soc., 146, 3353-3365 (2018) · Zbl 1392.35296
[30] Wang, X.-B.; Han, B., A Riemann-Hilbert approach to a generalized nonlinear Schrödinger equation on the quarter plane, Math. Phys. Anal. Geom., 23 (2020) · Zbl 1442.35430
[31] Wang, X.-B.; Han, B., Application of the Riemann-Hilbert method to the vector modified Korteweg-de Vries equation, Nonlinear Dyn., 99, 1363-1377 (2020) · Zbl 1459.37056
[32] Yang, Y.; Yan, Z.; Malomed, B. A., Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation, Chaos, 25 (2015) · Zbl 1374.35392
[33] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform (1981), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 0472.35002
[34] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0762.35001
[35] Ablowitz, M. J.; Prinari, B.; Trubatch, A. D., Discrete and Continuous Nonlinear Schrödinger Systems (2004), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1057.35058
[36] Faddeev, L. D.; Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (2007), Berlin: Springer, Berlin · Zbl 1111.37001
[37] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. W., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) · Zbl 1061.35520
[38] Wang, D.-S.; Wang, X., Long-time asymptotics and the bright \(N\)-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach, Nonlinear Anal. Real World Appl., 41, 334-361 (2018) · Zbl 1387.35056
[39] Ma, W.-X., The inverse scattering transform and soliton solutions of a combined modified Korteweg-de Vries equation, J. Math. Anal. Appl., 471, 796-811 (2019) · Zbl 1412.35380
[40] Ma, W.-X., Riemann-Hilbert problems and \(N\)-soliton solutions for a coupled mKdV system, J. Geom. Phys., 132, 45-54 (2018) · Zbl 1397.35260
[41] Ma, W.-X., Riemann-Hilbert problems of a six-component mKdV system and its soliton solutions, Acta Math. Sci., 39, 509-523 (2019) · Zbl 1499.35539
[42] Ma, W.-X., Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 149, 251-263 (2021) · Zbl 1477.37078
[43] Wang, Xiu-Bin; Han, Bo, Pure soliton solutions of the nonlocal Kundu-nonlinear Schrödinger equation, Theoret. and Math. Phys., 206, 40-67 (2021) · Zbl 1467.81040
[44] Li, Zhi-Qiang; Tian, Shou-Fu; Peng, Wei-Qi; Yang, Jin-Jie, Inverse scattering transform and soliton classification of higher-order nonlinear Schrödinger-Maxwell-Bloch equations, Theoret. and Math. Phys., 203, 709-725 (2020) · Zbl 1445.81076
[45] Yang, B.; Chen, Y., High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem, Nonlinear Anal. Real World Appl., 45, 918-941 (2019) · Zbl 1414.35196
[46] Wang, X.-B.; Han, B., The pair-transition-coupled nonlinear Schrödinger equation: The Riemann-Hilbert problem and \(N\)-soliton solutions, Eur. Phys. J. Plus, 134 (2019)
[47] Guo, B.; Ling, L., Riemann-Hilbert approach and \(N\)-soliton formula for coupled derivative Schrödinger equation, J. Math. Phys., 53 (2012) · Zbl 1276.81068
[48] Yang, J., Nonlinear Waves in Integrable and Nonintegrable Systems (2010), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1234.35006
[49] Wang, D. S.; Zhang, D. J.; Yang, J., Integrable properties of the general coupled nonlinear Schrödinger equations, J. Math. Phys., 51 (2010) · Zbl 1309.35145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.