×

Dynamics of kink-soliton solutions of the \((2+1)\)-dimensional sine-Gordon equation. (English. Russian original) Zbl 1486.81102

Theor. Math. Phys. 210, No. 1, 68-84 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 80-98 (2022).
Summary: We study the dynamics of explicit solutions of the \((2+1)\)-dimensional (2D) sine-Gordon equation. The Darboux transformation is applied to the associated linear eigenvalue problem to construct nontrivial solutions of the 2D sine-Gordon equation in terms of a ratio of determinants. We obtain a generalized expression for an \(N\)-fold transformed dynamical variable, which enables us to calculate explicit expressions of nontrivial solutions. To explore the dynamics of kink soliton solutions, explicit expressions for one- and two-soliton solutions are derived for particular column solutions. Different profiles of kink-kink and kink-anti-kink interactions are illustrated for different parameters and arbitrary functions. We also present a first-order bound state solution.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
35Q05 Euler-Poisson-Darboux equations
35P05 General topics in linear spectral theory for PDEs
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Zakharov, V. E.; Takhtadzhyan, L. A.; Faddeev, L. D., Complete description of solutions of the ‘sine-Gordon’ equation, Soviet Phys. Dokl., 19, 824-826 (1974) · Zbl 0312.35051
[2] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., Method for solving the sine-Gordon equation, Phys. Rev. Lett., 30, 1262-1264 (1973) · doi:10.1103/PhysRevLett.30.1262
[3] Bour, E., Théorie de la déformation des surfaces (1861), Paris: Gauthier-Villars, Paris
[4] Bäcklund, A. V., Ueber flächentransformationen, Math. Ann., 9, 297-320 (1875) · JFM 07.0233.02 · doi:10.1007/BF01443337
[5] Frenkel, J.; Kontorova, T., Propagation of dislocation in crystals, J. Phys. USSR, 1, 348 (1939) · Zbl 0022.28301
[6] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., Nonlinear-evolution equations of physical significance, Phys. Rev. Lett., 31, 125-127 (1973) · Zbl 1243.35143 · doi:10.1103/PhysRevLett.31.125
[7] Lamb Jr., G. L., Propagation of ultrashort optical pulses, Phys. Lett. A, 25, 181-182 (1967) · doi:10.1016/0375-9601(67)90843-2
[8] Kozel, V. O.; Kotlyarov, A. P., Almost periodic solutions of the equation \(u_{tt}-u_{xx}+\sin u=0\), Dokl. Akad. Nauk Ukrain. SSR Ser. A, 0, 878-881 (1976) · Zbl 0337.35003
[9] Dubrovin, B. A.; Natanzon, S. M., Real two-zone solutions of the sine-Gordon equation, Funct. Anal. Appl., 16, 21-33 (1982) · Zbl 0554.35100 · doi:10.1007/BF01081805
[10] Bobenko, A. I., Periodic finite-zone solutions of the sine-Gordon equation, Funct. Anal. Appl., 18, 240-242 (1984) · Zbl 0556.35119 · doi:10.1007/BF01086164
[11] Belokolos, E. D.; Bobenko, A. I.; Enol’skii, V. Z.; Its, A. R.; Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations (1994), Berlin: Springer, Berlin · Zbl 0809.35001
[12] Josephson, B. D., Supercurrents through barriers, Adv. Phys., 14, 419-451 (1965) · doi:10.1080/00018736500101091
[13] Lebwohl, P.; Stephen, M. J., Properties of vortex lines in superconducting barriers, Phys. Rev, 163, 376-379 (1967) · doi:10.1103/PhysRev.163.376
[14] Scott, A. C., Steady propagation on long Josephson junctions, Bull. Am. Phys. Soc., 12, 308-309 (1967)
[15] Scott, A. C.; Johnson, W. J., Internal flux motion in large Josephson junctions, Appl. Phys. Lett., 14, 316-318 (1969) · doi:10.1063/1.1652665
[16] Barone, A., Flux-flow effect in Josephson tunnel junctions, J. Appl. Phys., 42, 2747-2751 (1971) · doi:10.1063/1.1660617
[17] Skyrme, T. H. R., A non-linear theory of strong interactions, Proc. Roy. Soc. London. Ser. A., 247, 260-278 (1958)
[18] Skyrme, T. H. R., Particle states of a quantized meson field, Proc. Roy. Soc. London. Ser. A., 262, 237-245 (1961) · Zbl 0099.43605
[19] Rubinstein, J., Sine-Gordon equation, J. Math. Phys., 11, 258-266 (1970) · doi:10.1063/1.1665057
[20] Enz, U., Discrete mass, elementary length, and a topological invariant as a consequence of a relativistic invariant variational principle, Phys. Rev., 131, 1392-1394 (1963) · Zbl 0136.23604 · doi:10.1103/PhysRev.131.1392
[21] Rosen, N.; Rosenstock, H. B., The force between particles in a nonlinear field theory, Phys. Rev., 85, 257-259 (1952) · Zbl 0046.22003 · doi:10.1103/PhysRev.85.257
[22] Ivancevic, V. G.; Ivancevic, T. T., Sine-Gordon solitons, kinks and breathers as physical models of nonlinear excitations in living cellular structures, J. Geom. Symmetry Phys., 31, 1-56 (2013) · Zbl 1292.82040
[23] Yomosa, S., Soliton excitations in deoxyribonucleic acid (DNA) double helices, Phys. Rev. A, 27, 2120-2125 (1983) · doi:10.1103/PhysRevA.27.2120
[24] Peyrard, M.; Bishop, A. R., Statistical mechanics of a nonlinear model for DNA denaturation, Phys. Rev. Lett., 62, 2755-2758 (1989) · doi:10.1103/PhysRevLett.62.2755
[25] Yakushevich, L. V., Nonlinear Physics of DNA (2006), New York: John Wiley and Sons, New York · Zbl 0913.92001
[26] Daniel, M.; Vasumathi, V., Solitonlike base pair opening in a helicoidal DNA: An analogy with a helimagnet and a cholesteric liquid crystal, Phys. Rev. E, 79 (2009) · doi:10.1103/PhysRevE.79.012901
[27] Currie, J. F., Aspects of exact dynamics for general solutions of the sine-Gordon equation with applications to domain walls, Phys. Rev. A, 16, 1692-1699 (1977) · doi:10.1103/PhysRevA.16.1692
[28] Gibbon, J. D.; James, I. N.; Moroz, I. M., An example of soliton behaviour in a rotating baroclinic fluid, Proc. Roy. Soc. London Ser. A., 367, 219-237 (1979) · Zbl 0423.76016
[29] Matveev, V. B.; Salle, M. A., Darboux Transformations and Solitons (1991), Berlin: Springer, Berlin · Zbl 0744.35045 · doi:10.1007/978-3-662-00922-2
[30] Rogers, C.; Schief, W. K., Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory (2002), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1019.53002 · doi:10.1017/CBO9780511606359
[31] Gu, C.; Hu, H.; Zhou, Z., Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry (2005), Dordrecht: Springer Science + Business Media, Dordrecht · Zbl 1084.37054 · doi:10.1007/1-4020-3088-6
[32] Veselov, A. P.; Novikov, S. P., Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations, Soviet Math. Dokl., 30, 588-591 (1984) · Zbl 0613.35020
[33] Davey, A.; Stewartson, K., On three-dimensional packets of surface waves, Proc. Roy. Soc. London Ser. A., 338, 101-110 (1974) · Zbl 0282.76008
[34] Wang, G.; Yang, K.; Gu, H.; Guan, F.; Kara, A., A \((2+1)\)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions, Nucl. Phys. B, 953 (2020) · Zbl 1473.81059 · doi:10.1016/j.nuclphysb.2020.114956
[35] Wazwaz, A.-M., New integrable \((2+1)\)-dimensional sine-Gordon equations with constant and time-dependent coefficients: Multiple optical kink wave solutions, Optik, 216 (2020) · doi:10.1016/j.ijleo.2020.164640
[36] Wazwaz, A.-M., New integrable \((2+1)\)- and \((3+1)\)-dimensional sinh-Gordon equations with constant and time-dependent coefficients, Phys. Lett. A, 384 (2020) · Zbl 1448.35458 · doi:10.1016/j.physleta.2020.126529
[37] Feng, Y.; Bilige, S.; Wang, X., Diverse exact analytical solutions and novel interaction solutions for the \((2+1)\)-dimensional Ito equation, Phys. Scr., 95 (2020) · doi:10.1088/1402-4896/aba71b
[38] Wang, G.; Kara, A. H., A \((2+1)\)-dimensional KdV equation and mKdV equation: Symmetries, group invariant solutions and conservation laws, Phys. Lett. A, 383, 728-731 (2019) · Zbl 1479.37073 · doi:10.1016/j.physleta.2018.11.040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.