×

On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field. (English. Russian original) Zbl 1487.33010

Theor. Math. Phys. 210, No. 1, 121-134 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 140-155 (2022).
Summary: We present two new limit relations that reduce the orthogonal pseudo-Jacobi polynomials directly to the Hermite polynomials with shifted and nonshifted arguments. The proofs of these limit relations are based on the method of mathematical induction. These limits open up the prospects for studying new exactly solvable harmonic oscillator models in homogeneous external fields in quantum mechanics in terms of pseudo-Jacobi polynomials. As an application of these limit relations, a model of a linear harmonic oscillator with a position-dependent mass in an external homogeneous gravitational field (a pseudo-Jacobi oscillator in an external field) is considered. The form of the generalized Hamiltonian for describing quantum mechanical systems with a position-dependent mass is presented.

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Nikiforov, A. F.; Uvarov, V. B., Special Functions of Mathematical Physics (1988), Boston, MA: Birkhäuser, Boston, MA · Zbl 0624.33001 · doi:10.1007/978-1-4757-1595-8
[2] Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B., Classical Orthogonal Polynomials of a Discrete Variable (1991), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 0743.33001 · doi:10.1007/978-3-642-74748-9
[3] Landau, L. D.; Lifshitz, E. M., Course of Theoretical Physics (1977), Oxford, New York: 3rd ed., Pergamon, Oxford, New York
[4] Koekoek, R.; Lesky, P. A.; Swarttouw, R. F., Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues (2010), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[5] Bateman, H.; Erdélyi, A., Higher Transcendental Functions (1953), New York-Toronto-London: McGraw-Hill, New York-Toronto-London · Zbl 0143.29202
[6] Jafarov, E. I.; Mammadova, A. M.; Jeugt, J. Van der, On the direct limit from pseudo Jacobi polynomials to Hermite polynomials, Mathematics, 9 (2021) · doi:10.3390/math9010088
[7] Jafarov, E. I.; Nagiyev, S. M.; Oste, R.; Jeugt, J. Van der, Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.81186 · doi:10.1088/1751-8121/abbd1a
[8] Dabrowska, J. W.; Khare, A.; Sukhatme, U. P., Explicit wavefunctions for shape-invariant potentials by operator techniques, J. Phys. A: Math. Gen., 21, L195-L200 (1988) · doi:10.1088/0305-4470/21/4/002
[9] Levai, G., A search for shape-invariant solvable potentials, J. Phys. A: Math. Gen., 22, 689-702 (1989) · Zbl 0687.35081 · doi:10.1088/0305-4470/22/6/020
[10] BenDaniel, D. J.; Duke, C. B., Space-charge effects on electron tunneling, Phys. Rev., 152, 683-692 (1966) · doi:10.1103/PhysRev.152.683
[11] Roos, O. von, Position-dependent effective masses in semiconductor theory, Phys. Rev. B, 27, 7547-7552 (1983) · doi:10.1103/PhysRevB.27.7547
[12] Lévy-Leblond, J.-M., Position-dependent effective mass and Galilean invariance, Phys. Rev. A, 52, 1845-1849 (1995) · doi:10.1103/PhysRevA.52.1845
[13] Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructure (1988), Paris: Les Edition de Physique, Paris
[14] Harrison, P., Quantum Wells, Wires and Dots: Theoretical and Computational Physics (2000), New York: John Wiley and Sons, New York
[15] Barranco, M.; Pi, M.; Gatica, S. M.; Hernández, E. S.; Navarro, J., Structure and energetics of mixed \(^4 He-^3He\) drops, Phys. Rev. B, 56, 8997-9003 (1997) · doi:10.1103/PhysRevB.56.8997
[16] Saavedra, F. Arias de; Boronat, J.; Polls, A.; Fabrocini, A., Effective mass of one \(^4He\) atom in liquid \(^3He\), Phys. Rev. B, 50, 4248-4251 (1994) · doi:10.1103/PhysRevB.50.4248
[17] Gora, T.; Williams, F., Theory of electronic states and transport in graded mixed semiconductors, Phys. Rev., 177, 1179-1182 (1969) · doi:10.1103/PhysRev.177.1179
[18] Zhu, Q.-G.; Kroemer, H., Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors, Phys. Rev. B, 27, 3519-3527 (1983) · doi:10.1103/PhysRevB.27.3519
[19] Plastino, A. R.; Rigo, A.; Casas, M.; Garcias, F.; Plastino, A., Supersymmetric approach to quantum systems with position-dependent effective mass, Phys. Rev. A, 60, 4318-4325 (1999) · doi:10.1103/PhysRevA.60.4318
[20] Rajbongshi, H.; Singh, N. N., Generation of exactly solvable potentials of the \(D\)-dimensional position-dependent mass Schrödinger equation using the transformation method, Theoret. and Math. Phys., 183, 715-729 (2015) · Zbl 1327.81190 · doi:10.1007/s11232-015-0290-2
[21] Rajbongshi, H., Exactly solvable potentials and the bound-state solution of the position-dependent mass Schrödinger equation in \(D\)-dimensional space, Theoret. and Math. Phys., 184, 996-1010 (2015) · Zbl 1325.81081 · doi:10.1007/s11232-015-0312-0
[22] Amir, N.; .Iqbal, S., Algebraic solutions of shape-invariant position-dependent effective mass systems, J. Math. Phys., 57 (2016) · Zbl 1342.82145 · doi:10.1063/1.4954283
[23] Roy, B., Lie algebraic approach to singular oscillator with a position-dependent mass, Europhys. Lett., 72, 1-6 (2005) · doi:10.1209/epl/i2005-10212-2
[24] Yu, J.; Dong, S.-H., Exactly solvable potentials for the Schrödinger equation with spatially dependent mass, Phys. Lett. A, 325, 194-198 (2004) · Zbl 1161.81353 · doi:10.1016/j.physleta.2004.03.056
[25] Lima, J. R. F.; Vieira, M.; Furtado, C.; Moraes, F.; Filgueiras, C., Yet another position-dependent mass quantum model, J. Math. Phys., 53 (2012) · Zbl 1315.82025 · doi:10.1063/1.4732509
[26] Quesne, C.; Tkachuk, V. M., Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem, J. Phys. A: Math. Gen., 37, 4267-4281 (2004) · Zbl 1063.81070 · doi:10.1088/0305-4470/37/14/006
[27] Cariñena, J. F.; Rañada, M. F.; Santander, M., Quantization of Hamiltonian systems with a position dependent mass: Killing vector fields and Noether momenta approach, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1378.81054 · doi:10.1088/1751-8121/aa8e90
[28] Jafarov, E. I.; Nagiyev, S. M.; Jafarova, A. M., Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator, Rep. Math. Phys., 86, 25-37 (2020) · Zbl 1451.81229 · doi:10.1016/S0034-4877(20)30055-0
[29] Jafarov, E. I.; Nagiyev, S. M., Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field, Theoret. and Math. Phys., 207, 447-458 (2021) · Zbl 1467.81035 · doi:10.1134/S0040577921040048
[30] Dutra, A. de Souza; Oliveira, A. de, Two-dimensional position-dependent massive particles in the presence of magnetic fields, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1154.82030 · doi:10.1088/1751-8113/42/2/025304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.