×

Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation. (English. Russian original) Zbl 1486.81097

Theor. Math. Phys. 210, No. 1, 31-45 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 38-53 (2022).
Summary: We give a detailed discussion of a nonlocal derivative nonlinear Schrödinger (NL-DNLS) equation with zero boundary conditions at infinity in terms of the inverse scattering transform. The direct scattering problem involves discussions of the analyticity, symmetries, and asymptotic behavior of the Jost solutions and scattering coefficients, and the distribution of the discrete spectrum points. Because of the symmetries of the NL-DNLS equation, the discrete spectrum is different from those for DNLS-type equations. The inverse scattering problem is solved by the method of a matrix Riemann-Hilbert problem. The reconstruction formula, the trace formula, and explicit solutions are presented. The soliton solutions with special parameters for the NL-DNLS equation with a reflectionless potential are obtained, which may have singularities.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
81U40 Inverse scattering problems in quantum theory
35Q15 Riemann-Hilbert problems in context of PDEs
Full Text: DOI

References:

[1] Gerdjikov, V. S.; Vilasi, G.; Yanovski, A. B., Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods (2008), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1293.37002 · doi:10.1007/978-3-540-77054-1
[2] Ma, W.-X.; You, Y., Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. Math. Soc., 357, 1753-1778 (2005) · Zbl 1062.37077 · doi:10.1090/S0002-9947-04-03726-2
[3] Hu, X.-R.; Lou, S.-Y.; Chen, Y., Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation, Phys. Rev. E, 85 (2012) · doi:10.1103/PhysRevE.85.056607
[4] Serkin, V. N.; Hasegava, A., Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett., 85, 4502-4505 (2000) · doi:10.1103/PhysRevLett.85.4502
[5] Guo, B.; Ling, L.; Liu, Q. P., Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85 (2012) · doi:10.1103/PhysRevE.85.026607
[6] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy Soc. Edinburgh Sect. A, 142, 1237-1262 (2012) · Zbl 1290.35308 · doi:10.1017/S0308210511000746
[7] Benney, D. J.; Newell, A. C., Propagation of nonlinear wave envelopes, J. Math. Phys., 46, 133-139 (1967) · Zbl 0153.30301 · doi:10.1002/sapm1967461133
[8] Ablowitz, M. J.; Musslimani, Z. H., Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.064105
[9] Ablowitz, M. J.; Musslimani, Z. H., Integrable discrete PT symmetric model, Phys. Rev. E, 90 (2014) · doi:10.1103/PhysRevE.90.032912
[10] Ablowitz, M. J.; Musslimani, Z. H., Integrable nonlocal nonlinear equations, Stud. Appl. Math., 139, 7-59 (2017) · Zbl 1373.35281 · doi:10.1111/sapm.12153
[11] Yang, J., General \(N\)-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations, Phys. Lett. A, 383, 328-337 (2019) · Zbl 1473.35519 · doi:10.1016/j.physleta.2018.10.051
[12] Yang, B.; Yang, J., Transformations between nonlocal and local integrable equations, Stud. Appl. Math., 140, 178-201 (2018) · Zbl 1392.35297 · doi:10.1111/sapm.12195
[13] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53, 249-315 (1974) · Zbl 0408.35068 · doi:10.1002/sapm1974534249
[14] Gerdjikov, V. S.; Saxena, A., Complete integrability of nonlocal nonlinear Schrödinger equation, J. Math. Phys., 58 (2017) · Zbl 1364.37147 · doi:10.1063/1.4974018
[15] Ablowitz, M. J.; Musslimani, Z. H., Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29, 915-946 (2016) · Zbl 1338.37099 · doi:10.1088/0951-7715/29/3/915
[16] Zhang, G.; Yan, Z., The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: inverse scattering transforms and \(N\)-double-pole solutions, J. Nonlinear Sci., 30, 3089-3127 (2020) · Zbl 1462.35372 · doi:10.1007/s00332-020-09645-6
[17] Ablowitz, M. J.; Biondini, G.; Prinari, B., Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions, Inverse Problems, 23, 1711-1758 (2007) · Zbl 1127.35059 · doi:10.1088/0266-5611/23/4/021
[18] Biondini, G.; Kovačič, G., Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 55 (2014) · Zbl 1298.35187 · doi:10.1063/1.4868483
[19] Ablowitz, M. J.; Luo, X.-D.; Musslimani, Z. H., Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 59 (2018) · Zbl 1383.35204 · doi:10.1063/1.5018294
[20] Prinari, B.; Ablowitz, M. J.; Biondini, G., Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions, J. Math. Phys., 47 (2006) · Zbl 1112.37070 · doi:10.1063/1.2209169
[21] Ji, J.-L.; Zhu, Z.-N., Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform, J. Math. Anal. Appl., 453, 973-984 (2017) · Zbl 1369.35079 · doi:10.1016/j.jmaa.2017.04.042
[22] Wu, J., Riemann-Hilbert approach and nonlinear dynamics in the nonlocal defocusing nonlinear Schrödinger equation, Eur. Phys. J. Plus, 135 (2020) · doi:10.1140/epjp/s13360-020-00348-1
[23] Biondini, G.; Kraus, D., Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions, SIAM J. Math. Anal., 47, 706-757 (2015) · Zbl 1339.35282 · doi:10.1137/130943479
[24] Zhang, B.; Fan, E., Riemann-Hilbert approach for a Schrödinger-type equation with nonzero boundary conditions, Modern Phys. Lett. B, 35 (2021) · doi:10.1142/S0217984921502080
[25] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095
[26] Guo, B.; Ling, L., Riemann-Hilbert approach and \(N\)-soliton formula for coupled derivative Schrödinger equation, J. Math. Phys., 53 (2012) · Zbl 1276.81068 · doi:10.1063/1.4732464
[27] Wang, D.-S.; Wang, X., Long-time asymptotics and the bright \(N\)-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach, Nonlinear Anal. Real World Appl., 41, 334-361 (2018) · Zbl 1387.35056 · doi:10.1016/j.nonrwa.2017.10.014
[28] Geng, X.; Wu, J., Riemann-Hilbert approach and \(N\)-soliton solutions for a generalized Sasa-Satsuma equation, Wave Motion, 60, 62-72 (2016) · Zbl 1467.35282 · doi:10.1016/j.wavemoti.2015.09.003
[29] Cheng, Q.; Fan, E., Long-time asymptotics for a mixed nonlinear Schrödinger equation with the Schwartz initial data, J. Math. Anal. Appl., 489 (2020) · Zbl 1442.35414 · doi:10.1016/j.jmaa.2020.124188
[30] Chen, S.; Yan, Z., Long-time asymptotics of solutions for the coupled dispersive AB system with initial value problems, J. Math. Anal. Appl., 498 (2021) · Zbl 1462.35229 · doi:10.1016/j.jmaa.2021.124966
[31] Kaup, D. J.; Newell, A. C., An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19, 798-801 (1978) · Zbl 0383.35015 · doi:10.1063/1.523737
[32] Zhou, G.-Q.; Huang, N.-N., An \(N\)-soliton solution to the DNLS equation based on revised inverse scattering transform, J. Phys. A: Math. Theor., 40, 13607-13623 (2007) · Zbl 1131.37067 · doi:10.1088/1751-8113/40/45/008
[33] Zhou, G., A newly revised inverse scattering transform for \(DNLS^+\) equation under nonvanishing boundary condition, Wuhan Univ. J. Nat. Sci., 17, 144-150 (2012) · doi:10.1007/s11859-012-0819-2
[34] Lashkin, V. M., \(N\)-soliton solutions and perturbation theory for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions, J. Phys. A: Math. Theor., 40, 6119-6132 (2007) · Zbl 1189.35311 · doi:10.1088/1751-8113/40/23/008
[35] Chen, X.-J.; Lam, W. K., Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions, Phys. Rev. E, 69 (2004) · doi:10.1103/PhysRevE.69.066604
[36] Yang, C.-N.; Yu, J.-L.; Cai, H.; Huang, N.-N., Inverse scattering transform for the derivative nonlinear Schrödinger equation, Chinese Phys. Lett., 25, 421-424 (2008) · doi:10.1088/0256-307X/25/2/019
[37] Zhou, Z.-X., Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 62, 480-488 (2018) · Zbl 1470.35344 · doi:10.1016/j.cnsns.2018.01.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.