×

Generalized Poisson ensemble. (English) Zbl 07482562

Summary: A generalized Poisson ensemble is constructed using the maximum entropy principle based on the non-extensive entropy. It is found that the correlations which are introduced among the eigenvalues lead to statistical distributions with heavy tails. As a consequence, long-range statistics, measured by the number variance, show super-Poissonian behavior and the short-range ones, measured by the nearest-neighbor-distribution show, with respect to Poisson, enhancement at small and large separations. Potential applications were found for the sequence data of protein and DNA, which display good agreement with the model. In particular, the ensuing parameter \(\lambda\) of the generalized Poisson ensemble can be utilized to facilitate protein classification.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

GitHub; UDSMProt
Full Text: DOI

References:

[1] Porter, C. S., Statistical Theories of Spectra (1965), Academic Press: Academic Press New York
[2] Mehta, M. L., Random Matrices (2004), Elsevier Academic Press · Zbl 1107.15019
[3] Balian, R., Random matrices and information theory, Nuovo Cimento B, 57, 183 (1968) · Zbl 0209.21903
[4] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479 (1998) · Zbl 1082.82501
[5] Hilhorst, H. J.; Schehr, G., A note on \(q\)-Gaussians and non-Gaussians in statistical mechanics, J. Stat. Mech., P06003 (2007) · Zbl 1456.82003
[6] Jizba, Petr; Korbel, Jan, Maximum entropy principle in statistical inference: Case for non-Shannonian entropies, Phys. Rev. Lett., 122, Article 120601 pp. (2019)
[7] Bertuola, A. C.; Bohigas, O.; Pato, M. P., Family of generalized random matrix ensembles, Phys. Rev. E, 70, Article 065102 pp. (2004)
[8] Toscano, F.; Vallejos, R. O.; Tsallis, C., Random matrix ensembles from nonextensive entropy, Phys. Rev. E, 69, Article 066131 pp. (2004)
[9] Abul-Magd, A. Y., Nonextensive random matrix theory approach to mixed regular-chaotic dynamics, Phys. Rev. E, 71, Article 066207 pp. (2005)
[10] Muttalib, K. A.; Klauder, J. R., Family of solvable generalized random-matrix ensembles with unitary symmetry, Phys. Rev. E, 71, Article 055101 pp. (2005)
[11] Akemann, G.; Vivo, P., Power law deformation of Wishart-Laguerre ensembles of random matrices, J. Stat. Mech., P09002 (2008)
[12] Abul-Magd, A. Y.; Akemann, G.; Vivo, P., Superstatistical generalizations of Wishart-Laguerre ensembles of random matrices, J. Phys. A, 42, Article 175207 pp. (2009) · Zbl 1165.15306
[13] Akemann, G.; Fischmann, J.; Vivo, P., Universal correlations and power-law tails in financial covariance matrices, Physica A, 389, 2566 (2010)
[14] Bohigas, O.; Giannoni, M. J.; Schmit, C., Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett., 52, 1 (1984) · Zbl 1119.81326
[15] Heusler, S.; Müller, S.; Altland, A.; Braun, P.; Haake, F., Periodic-orbit theory of level correlations, Phys. Rev. Lett., 98, Article 044103 pp. (2007)
[16] Brendel, V.; Bucher, P.; Nourbakhsh, I. R.; Blaisdell, B. E.; Karlin, S., Methods and algorithms for statistical analysis of protein sequences, Proc. Natl. Acad. Sci. USA, 89, 2002-2006 (1992)
[17] Pearson, William R., Effective protein sequence comparison, Methods Enzymol., 266, 227-258 (1996)
[18] Buldyrev, S. V.; Dokholyan, N. V.; Goldberger, A. L.; Havlin, S.; Peng, C.-K.; Stanley, H. E.; Viswanathan, G. M., Analysis of DNA sequences using methods of statistical physics, Physica A, 249, 430-438 (1998)
[19] Luo, F.; Pradip, P. K.; Zhou, J., Handbook of Data Intensive Computing: Application of Random Matrix Theory To Analyze Biological Data (2011), Springer: Springer New York
[20] Tsallis, C.; Mendes, R. S.; Plastino, A. R., The role of constraints within generalized nonextensive statistics, Physica A, 261, 534 (1998)
[21] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1965), Dover: Dover New York
[22] Berry, M. V.; Keating, J. P., (Supersymmetry and Trace Formulae (1999), Springer: Springer New York), 355-367
[23] Bender, C. M.; Brody, D. C.; MΩ AÄuller, M. P., Hamiltonian for the zeros of the Riemann zeta function, Phys. Rev. Lett., 118, Article 130201 pp. (2017)
[24] Deng, Weibing; Pato, Mauricio P., Approaching word length via level spectra, Physica A, 481, 167 (2017) · Zbl 1495.91100
[25] https://www.uniprot.org.
[26] https://github.com/xiephysics/Generalized_Poisson_ensemble.
[27] https://en.wikipedia.org/wiki/Titin.
[28] https://en.wikipedia.org/wiki/CA-125.
[29] Strodthoff, Nils; Wagner, Patrick; Wenzel, Markus; Samek, Wojciech, UDSMProt: universal deep sequence models for protein classification, Bioinformatics, 36, 8, 2401-2409 (2020)
[30] Taylor, L. R., Aggregation, variance and the mean, Nature, 189, 732 (1961)
[31] Eisler, Z.; Kertész, J., Scaling theory of temporal correlations and size dependent fluctuations in the traded value of stocks, Phys. Rev. E, 73, Article 046109 pp. (2006)
[32] Eisler, Z.; Bartos, I.; Kertész, J., Fluctuation scaling in complex systems: Taylor’s law and beyond, Adv. Phys., 57, 89 (2008)
[33] de Menezes, M.; Barabási, A.-L., Phys. Rev. Lett., 92, 28701 (2004)
[34] https://www.ncbi.nlm.nih.gov/gene.
[35] Bohigas, O.; de Carvalho, J. X.; Pato, M. P., Disordered ensembles of random matrices, Phys. Rev. E, 77, Article 011122 pp. (2008)
[36] Gerlach, Martin; Font-Clos, Francesc; Altmann, Eduardo G., Similarity of symbol frequency distributions with heavy tails, Phys. Rev. X, 6, Article 021009 pp. (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.