×

Local to global principle for semiabelian varieties isogenous to the product of an abelian variety and a torus. (English) Zbl 1489.11091

Let \(F\) be a number field, \(F'\) an extension, \(A\) a semi-abelian variety over \(F\) such that it’s base change to \(F'\) splits as a product \(\mathbb G_m\times G_1^{e_1}\times\dots\times G_k^{e_k}\) with \(G_1,\dots,G_k\) pairwise non isogenous, simple abelian varieties such that \(e_r \leq \dim_{\mathrm{End}^0(G_r)}(H_1(G_r(\mathbb C), \mathbb Q)\). For a finite place \(v\) of \(F'\), let \(A_v\) denote reduction of \(A \pmod v\).
Let \(P \in A(F), \Lambda \subset A(F)\) a finite generated subgroup. If \(P \in \Lambda \pmod v\) for almost all primes \(v\), the paper shows that \(P \in \Lambda + A(F)_{\mathrm{tor}}\). In fact, the paper shows that it is sufficient to check inclusion at a finite set of carefully selected primes.
The paper builds on the results and methods of G. Banaszak and P. Krasoń [Acta Arith. 150, No. 4, 315–337 (2011; Zbl 1281.11061)] and can be seen as a combination of the results of that paper with the classical paper of A. Schinzel [Acta Arith. 27, 397–420 (1975; Zbl 0342.12002)].
Reviewer: Asvin G (Madison)

MSC:

11G10 Abelian varieties of dimension \(> 1\)
14L10 Group varieties
14L15 Group schemes
Full Text: DOI

References:

[1] A. A. Albert, Involutorial simple algebras and real Riemann matrices, Ann. of Math. 36 (1935), 886-964. · JFM 61.1038.01
[2] R. Baer, Erweiterung von Gruppen und ihren Isomorphismen, Math. Z. 38 (1934), 375-416.. · JFM 60.0079.04
[3] G. Banaszak, Mod p logarithms log 2 3 and log 3 2 differ for infinitely many primes, Ann. Math. Siles. 12 (1998), 141-148. · Zbl 0923.11006
[4] G. Banaszak, On a Hasse principle for Mordell-Weil groups, C. R. Math. Acad. Sci. Paris 347 (2009), 709-714. · Zbl 1221.11138
[5] G. Banaszak and D. Blinkiewicz, Commensurability in Mordell-Weil groups of abelian varieties and tori, Funct. Approx. Comment. Math. 58 (2018), 145-156. · Zbl 1491.11060
[6] G. Banaszak, W. Gajda and P. Krasoń, Support problem for the intermediate Jacobians of l-adic representations, J. Number Theory 100 (2003), 133-168. · Zbl 1088.11040
[7] G. Banaszak, W. Gajda and P. Krasoń, Detecting linear dependence by reduction maps, J. Number Theory 115 (2005), 322-342. · Zbl 1089.11030
[8] G. Banaszak and P. Krasoń, On arithmetic in Mordell-Weil groups, Acta Arith. 150 (2011), 315-337. · Zbl 1281.11061
[9] S. Barańczuk, On reduction maps and support problem in K-theory and abelian varieties, J. Number Theory 119 (2006), 1-17. · Zbl 1107.14033
[10] S. Barańczuk and K. Górnisiewicz, On reduction maps for the étale and Quillen K-theory of curves and applications, J. K-Theory 2 (2008), 103-122. · Zbl 1171.11040
[11] L. Barbieri-Viale, A. Rosenschon and M. Saito, Deligne’s conjecture on 1-motives, Ann. of Math. 158 (2003), 593-633. · Zbl 1124.14014
[12] F. A. Bogomolov, Sur l’algébricité des représentations l-adiques, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A701-A703. · Zbl 0457.14020
[13] W. Bondarewicz and P. Krasoń, On a reduction map for Drinfeld modules, Acta Arith. 195 (2020), 109-129. · Zbl 1458.11096
[14] S. Bosch, W. Lülkebohmert and M. Raynaud, Néron Models, Springer, Berlin, 1990. · Zbl 0705.14001
[15] M. Brion, Commutative algebraic groups up to isogeny, Doc. Math. 22 (2017), 679-725. · Zbl 1378.14040
[16] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Math. Ser. 19, Prince-ton Univ. Press, Princeton, NJ, 1956. · Zbl 0075.24305
[17] RS] C. Corrales-Rodrigáñez and R. Schoof, The support problem and its elliptic ana-logue, J. Number Theory 64 (1997), 276-290. · Zbl 0922.11086 · doi:10.1006/jnth.1997.2114
[18] P. Deligne, Théorie de Hodge, III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5-77. · Zbl 0237.14003
[19] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366. · Zbl 0588.14026
[20] G. Faltings and C.-L. Chai, Degeneration of Abelian Varieties, Springer, Berlin, 1990. · Zbl 0744.14031
[21] W. Gajda and K. Górnisiewicz, Linear dependence in Mordell-Weil groups, J. Reine Angew. Math. 630 (2009), 219-233. · Zbl 1170.11013
[22] M. Hindry and J. H. Silverman, Diophantine Geometry. An Introduction, Grad. Texts in Math. 201, Springer, New York, 2000. · Zbl 0948.11023
[23] T. W. Hungerford, Algebra, Grad. Texts in Math. 73, Springer, New York, 2000.
[24] U. Jannsen, Mixed motives, motivic cohomology, and Ext-groups, in: Proc. Int. Congress of Mathematicians (Zürich, 1994), Birkhäuser, Basel, 1995, 667-679. · Zbl 0856.14006
[25] P. Jossen, Detecting linear dependence on an abelian variety via reduction maps, Comment. Math. Helv. 88 (2013), 323-352. · Zbl 1303.11069
[26] P. Jossen, On the arithmetic of 1-motives, Ph.D. thesis, CEU, 2009.
[27] P. Jossen and A. Perucca, A counterexample to the local-global principle of linear dependence for Abelian varieties, C. R. Math. Acad. Sci. Paris 348 (2010), 9-10. · Zbl 1219.11089
[28] [Kh-P] C. Khare and D. Prasad, Reduction of homomorphisms mod p and algebraicity, J. Number Theory 105 (2004), 322-332. · Zbl 1080.11046 · doi:10.1016/j.jnt.2003.10.006
[29] E. Kowalski, Some local-global applications of Kummer theory, Manuscripta Math. 111 (2003), 105-139. · Zbl 1089.11031
[30] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev den-sity theorem, in: Algebraic Number Fields: L-functions and Galois Properties (Durham, 1975), Academic Press, London, 1977, 409-464. · Zbl 0362.12011
[31] M. Larsen, The support problem for abelian varieties, J. Number Theory 101 (2003), 398-403. · Zbl 1039.11040
[32] H. W. Lenstra, Algorithms in algebraic number theory, Bull. Amer. Math. Soc. (N.S.) 26 (1992), 211-244. · Zbl 0759.11046
[33] T. I. Matev, Good reduction of 1-motives, Ph.D. thesis, Univ. Bayreuth, 2013.
[34] J. S. Milne, Abelian varieties, in: Arithmetic Geometry, G. Cornell and J. H. Sil-verman (eds.), Springer, New York, 1986, 103-150. · Zbl 0604.14028
[35] D. Mumford, Abelian Varieties, Oxford Univ. Press, London, 1970. · Zbl 0223.14022
[36] F. Oort, Commutative Group Scheme, Lecture Notes in Math. 15, Springer, Berlin, 1966. · Zbl 0216.05603
[37] A. Perucca, On the order of the reductions of points on abelian varieties and tori, Ph.D. thesis, Univ. Roma La Sapienza, 2008.
[38] A. Perucca, On the problem of detecting linear dependence for products of abelian varieties and tori, Acta Arith. 142 (2010), 119-128. · Zbl 1198.11055
[39] K. Rubin and A. Silverberg, Ranks of elliptic curves, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 455-474. · Zbl 1052.11039
[40] P. Rzonsowski, Linear relations and arithmetic on abelian schemes, Funct. Ap-prox. Comment. Math. 52 (2015), 83-107. · Zbl 1395.11095
[41] M. Sadek, On dependence of rational points on elliptic curves, C. R. Math. Acad. Sci. Soc. R. Can. 38 (2016), 75-84. · Zbl 1395.11093
[42] A. Schinzel, On power residues and exponential congruences, Acta Arith. 27 (1975), 397-420. · Zbl 0342.12002
[43] J.-P. Serre, Sur les groupes de congruence des variétés abéliennes. II, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 731-737. · Zbl 0222.14025
[44] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 123-201. · Zbl 0496.12011
[45] J.-P. Serre, Algebraic Groups and Class Fields, Grad. Texts in Math. 117, Sprin-ger, New York, 1988. · Zbl 0703.14001
[46] J. Tate, Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257-274. · Zbl 0359.12011
[47] T. Weston, Kummer theory of abelian varieties and reductions of Mordell-Weil groups, Acta Arith. 110 (2003), 77-88. · Zbl 1041.11044
[48] Poznań, Poland E-mail: dorota.blinkiewicz@amu.edu.pl
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.