×

Stability of singular solutions to the Navier-Stokes system. (English) Zbl 1487.35283

Summary: We develop mathematical methods which allow us to study asymptotic properties of solutions to the three dimensional Navier-Stokes system for incompressible fluid in the whole three dimensional space. We deal either with the Cauchy problem or with the stationary problem where solutions may be singular due to singular external forces which are either singular finite measures or more general tempered distributions with bounded Fourier transforms. We present results on asymptotic properties of such solutions either for large values of the space variables (so called the far-field asymptotics) or for large values of time.

MSC:

35Q30 Navier-Stokes equations
35A21 Singularity in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35C06 Self-similar solutions to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35B35 Stability in context of PDEs

References:

[1] Bae, H.-O.; Brandolese, L., On the effect of external forces on incompressible fluid motions at large distances, Ann. Univ. Ferrara, Sez. 7: Sci. Mat., 55, 225-238 (2009) · Zbl 1205.76073
[2] Bae, H.-O.; Brandolese, L.; Jin, B. J., Asymptotic behavior for the Navier-Stokes equations with nonzero external forces, Nonlinear Anal., 71, e292-e302 (2009) · Zbl 1238.76015
[3] Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge Mathematical Library (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0958.76001
[4] Bjorland, C.; Brandolese, L.; Iftimie, D.; Schonbek, M. E., \( L^p\)-solutions of the steady-state Navier-Stokes equations with rough external forces, Commun. Partial Differ. Equ., 36, 216-246 (2011) · Zbl 1284.76088
[5] Bjorland, C.; Schonbek, M. E., Existence and stability of steady-state solutions with finite energy for the Navier-Stokes equation in the whole space, Nonlinearity, 22, 1615-1637 (2009) · Zbl 1172.35463
[6] Brandolese, L., Fine properties of self-similar solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 192, 375-401 (2009) · Zbl 1169.76014
[7] Brandolese, L.; Meyer, Y., On the instantaneous spreading for the Navier-Stokes system in the whole space, vol. 8, (A Tribute to J. L. Lions (2002)), 273-285 · Zbl 1080.35063
[8] Brandolese, L.; Vigneron, F., New asymptotic profiles of nonstationary solutions of the Navier-Stokes system, J. Math. Pures Appl. (9), 88, 64-86 (2007) · Zbl 1127.35033
[9] Cannone, M., Harmonic analysis tools for solving the incompressible Navier-Stokes equations, (Handbook of mathematical fluid dynamics. Vol. III (2004), North-Holland: North-Holland Amsterdam), 161-244 · Zbl 1222.35139
[10] Cannone, M.; Karch, G., Smooth or singular solutions to the Navier-Stokes system?, J. Differ. Equ., 197, 247-274 (2004) · Zbl 1042.35043
[11] Cannone, M.; Planchon, F., On the non-stationary Navier-Stokes equations with an external force, Adv. Differ. Equ., 4, 697-730 (1999) · Zbl 0952.35089
[12] Decaster, A.; Iftimie, D., On the asymptotic behaviour of solutions of the stationary Navier-Stokes equations in dimension 3, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 34, 277-291 (2017) · Zbl 1373.35216
[13] Galaktionov, V. A., On Blow-up “Twistors” for the Navier-Stokes Equations in \(\mathbb{R}^3\): a View from Reaction-Diffusion Theory, 1-111 (2009)
[14] Galdi, G. P., An introduction to the mathematical theory of the Navier-Stokes equations, (Steady-State Problems. Steady-State Problems, Springer Monographs in Mathematics (2011), Springer: Springer New York) · Zbl 1245.35002
[15] Galdi, G. P.; Heywood, J. G.; Shibata, Y., On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest, Arch. Ration. Mech. Anal., 138, 307-318 (1997) · Zbl 0898.35071
[16] Grafakos, L., Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249 (2014), Springer: Springer New York · Zbl 1304.42001
[17] Heywood, J. G., Remarks on the possible global regularity of solutions of the three-dimensional Navier-Stokes equations, (Progress in Theoretical and Computational Fluid Mechanics. Progress in Theoretical and Computational Fluid Mechanics, Paseky, 1993. Progress in Theoretical and Computational Fluid Mechanics. Progress in Theoretical and Computational Fluid Mechanics, Paseky, 1993, Pitman Res. Notes Math. Ser., vol. 308 (1994), Longman Sci. Tech: Longman Sci. Tech Harlow), 1-32 · Zbl 0836.35119
[18] Kaneko, K.; Kozono, H.; Shimizu, S., Stationary solution to the Navier-Stokes equations in the scaling invariant Besov space and its regularity, Indiana Univ. Math. J., 68, 857-880 (2019) · Zbl 1428.35298
[19] Kang, K.; Miura, H.; Tsai, T.-P., Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data, Commun. Partial Differ. Equ., 37, 1717-1753 (2012) · Zbl 1258.35159
[20] Karch, G.; Schonbek, M. E.; Schonbek, T. P., Singularities of certain finite energy solutions to the Navier-Stokes system, Discrete Contin. Dyn. Syst., 40, 189-206 (2020) · Zbl 1431.35103
[21] Karch, G.; Zheng, X., Time-dependent singularities in the Navier-Stokes system, Discrete Contin. Dyn. Syst., 35, 3039-3057 (2015) · Zbl 1332.35311
[22] Kato, T., Strong \(L^p\)-solutions of the Navier-Stokes equation in \(\mathbf{R}^m\), with applications to weak solutions, Math. Z., 187, 471-480 (1984) · Zbl 0545.35073
[23] Kolyada, V. I., Estimates of Fourier transforms in Sobolev spaces, Stud. Math., 125, 67-74 (1997) · Zbl 0896.42008
[24] Konieczny, P.; Yoneda, T., On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differ. Equ., 250, 3859-3873 (2011) · Zbl 1211.35218
[25] Korolev, A.; Šverák, V., On the large-distance asymptotics of steady state solutions of the Navier-Stokes equations in 3D exterior domains, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 28, 303-313 (2011) · Zbl 1216.35090
[26] Kozono, H.; Okada, A.; Shimizu, S., Characterization of initial data in the homogeneous Besov space for solutions in the Serrin class of the Navier-Stokes equations, J. Funct. Anal., 278, Article 108390 pp. (2020) · Zbl 1433.35234
[27] Kozono, H.; Shimizu, S., Navier-Stokes equations with external forces in Lorentz spaces and its application to the self-similar solutions, J. Math. Anal. Appl., 458, 1693-1708 (2018) · Zbl 1379.35212
[28] Kozono, H.; Shimizu, S., Navier-Stokes equations with external forces in time-weighted Besov spaces, Math. Nachr., 291, 1781-1800 (2018) · Zbl 06941723
[29] Kozono, H.; Yamazaki, M., The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation, Indiana Univ. Math. J., 44, 1307-1336 (1995) · Zbl 0853.35089
[30] Landau, L., A new exact solution of Navier-Stokes equations, C. R. (Dokl.) Acad. Sci. URSS, 43, 286-288 (1944) · Zbl 0061.43410
[31] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics, Course of Theoretical Physics, vol. 6 (1959), Pergamon Press/Addison-Wesley Publishing Co., Inc.: Pergamon Press/Addison-Wesley Publishing Co., Inc. London-Paris-Frankfurt/Reading, Mass, Translated from the Russian by J.B. Sykes and W.H. Reid
[32] Le Jan, Y.; Sznitman, A. S., Stochastic cascades and 3-dimensional Navier-Stokes equations, Probab. Theory Relat. Fields, 109, 343-366 (1997) · Zbl 0888.60072
[33] Lemarié-Rieusset, P. G., On some classes of time-periodic solutions for the Navier-Stokes equations in the whole space, SIAM J. Math. Anal., 47, 1022-1043 (2015) · Zbl 1323.35131
[34] Lemarié-Rieusset, P. G., The Navier-Stokes Problem in the 21st Century (2016), CRC Press: CRC Press Boca Raton, FL · Zbl 1342.76029
[35] Li, L.; Li, Y.; Yan, X., Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. I. One singularity, Arch. Ration. Mech. Anal., 227, 1091-1163 (2018) · Zbl 1384.35064
[36] Li, L.; Li, Y.; Yan, X., Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. II. Classification of axisymmetric no-swirl solutions, J. Differ. Equ., 264, 6082-6108 (2018) · Zbl 1392.35208
[37] Li, L.; Li, Y.; Yan, X., Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. III. Two singularities, Discrete Contin. Dyn. Syst., 39, 7163-7211 (2019) · Zbl 1427.35180
[38] Li, Y. Y.; Yan, X., Asymptotic stability of homogeneous solutions of incompressible stationary Navier-Stokes equations, J. Differ. Equ., 297, 226-245 (2021) · Zbl 1473.35407
[39] Lighthill, M. J., Introduction to Fourier Analysis and Generalised Functions, Cambridge Monographs on Mechanics and Applied Mathematics (1958), Cambridge University Press: Cambridge University Press New York · Zbl 0078.11203
[40] Meyer, Y., Wavelets, paraproducts, and Navier-Stokes equations, (Current Developments in Mathematics. Current Developments in Mathematics, 1996, Cambridge, MA (1997), Int. Press: Int. Press Boston, MA), 105-212 · Zbl 0926.35115
[41] Miura, H.; Tsai, T.-P., Point singularities of 3D stationary Navier-Stokes flows, J. Math. Fluid Mech., 14, 33-41 (2012) · Zbl 1294.35071
[42] O’Neil, R., Convolution operators and \(L(p, q)\) spaces, Duke Math. J., 30, 129-142 (1963) · Zbl 0178.47701
[43] Phan, T. V.; Phuc, N. C., Stationary Navier-Stokes equations with critically singular external forces: existence and stability results, Adv. Math., 241, 137-161 (2013) · Zbl 1286.35196
[44] Secchi, P., On the stationary and nonstationary Navier-Stokes equations in \(\mathbf{R}^n\), Ann. Mat. Pura Appl. (4), 153, 293-305 (1988), (1989) · Zbl 0682.35089
[45] Slëzkin, N. A., On a case of integrability of the complete differential equations of a viscous fluid, Uč. Zap. MGU, 2, 89-90 (1934)
[46] Squire, H. B., The round laminar jet, Q. J. Mech. Appl. Math., 4, 321-329 (1951) · Zbl 0043.40001
[47] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30 (1970), Princeton University Press: Princeton University Press Princeton, N.J. · Zbl 0207.13501
[48] Tian, G.; Xin, Z., One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal., 11, 135-145 (1998) · Zbl 0923.35121
[49] Tsurumi, H., The stationary Navier-Stokes equations in the scaling invariant Triebel-Lizorkin spaces, Differ. Integral Equ., 32, 323-336 (2019) · Zbl 1424.35279
[50] Tsurumi, H., Well-posedness and ill-posedness of the stationary Navier-Stokes equations in toroidal Besov spaces, Nonlinearity, 32, 3798-3819 (2019) · Zbl 1433.35244
[51] Tsurumi, H., Well-posedness and ill-posedness problems of the stationary Navier-Stokes equations in scaling invariant Besov spaces, Arch. Ration. Mech. Anal., 234, 911-923 (2019) · Zbl 1428.35315
[52] Tsutsui, Y., The Navier-Stokes equations and weak Herz spaces, Adv. Differ. Equ., 16, 1049-1085 (2011) · Zbl 1236.35114
[53] Šverák, V., On Landau’s Solutions of the Navier-Stokes Equations, vol. 179, Problems in Mathematical Analysis, vol. 61, 208-228 (2011) · Zbl 1291.35193
[54] Yamazaki, M., The Navier-Stokes equations in the weak-\( L^n\) space with time-dependent external force, Math. Ann., 317, 635-675 (2000) · Zbl 0965.35118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.