×

Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis. (English) Zbl 1483.35035

Summary: In this paper, we are concerned with a quasi-linear hyperbolic-parabolic system of persistence and endogenous chemotaxis modelling vasculogenesis. Under some suitable structural assumption on the pressure function, we first predict and derive the system admits a nonlinear diffusion wave in \(\mathbb{R}\) driven by the damping effect. Then we show that the solution of the concerned system will locally and asymptotically converge to this nonlinear diffusion wave if the wave strength is small. By using the time-weighted energy estimates, we further prove that the convergence rate of the nonlinear diffusion wave is algebraic.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B45 A priori estimates in context of PDEs
35G55 Initial value problems for systems of nonlinear higher-order PDEs
35K57 Reaction-diffusion equations
92C17 Cell movement (chemotaxis, etc.)

References:

[1] Ambrosi, D.; Bussolino, F.; Preziosi, L., A review of vasculogenesis models, J. Theor. Med., 6, 1-19 (2005) · Zbl 1079.92038
[2] Berthelin, F.; Chiron, D.; Ribot, M., Stationary solutions with vacuum for a one-dimensional chemotaxis model with nonlinear pressure, Commun. Math. Sci., 14, 147-186 (2016) · Zbl 1343.92071
[3] Carrillo, J.; Chen, X.; Wang, Q.; Wang, Z.; Zhang, L., Phase transitions and bump solutions of the Keller-Segel model with volume exclusion, SIAM J. Appl. Math., 80, 232-261 (2020) · Zbl 1475.35036
[4] Chandrasekhar, S., An Introduction to the Study of Stellar Structure, vol. 2 (1957), Courier Corporation · Zbl 0079.23901
[5] Chavanis, P.-H.; Sire, C., Kinetic and hydrodynamic models of chemotactic aggregation, Physica A, 384, 199-222 (2007)
[6] Choudhuri, A. R., The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (1998), Cambridge University Press
[7] Dafermos, C. M.; Pan, R. H., Global BV solutions for the p-system with frictional damping, SIAM J. Math. Anal., 41, 1190-1205 (2009) · Zbl 1194.35255
[8] Di Francesco, M.; Donatelli, D., Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models, Discrete Contin. Dyn. Syst., Ser. B, 13, 79-100 (2010) · Zbl 1186.35011
[9] Di Russo, C., Analysis and numerical approximations of hydrodynamical models of biological movements, Rend. Mat. Appl., 32, 117-367 (2012) · Zbl 1301.92008
[10] Di Russo, C.; Sepe, A., Existence and asymptotic behavior of solutions to a quasi-linear hyperbolic-parabolic model of vasculogenesis, SIAM J. Math. Anal., 45, 748-776 (2013) · Zbl 1282.35060
[11] Duan, R. J.; Liu, Q. Q.; Zhu, C. J., Darcy’s law and diffusion for a two-fluid Euler-Maxwell system with dissipation, Math. Models Methods Appl. Sci., 25, 2089-2151 (2015) · Zbl 1330.35318
[12] Duan, R. J.; Ruan, L. Z.; Zhu, C. J., Optimal decay rates to conservation laws with diffusion-type terms of regularity-gain and regularity-loss, Math. Models Methods Appl. Sci., 22, Article 1250012 pp. (2012) · Zbl 1241.35133
[13] Filbet, F.; Shu, C.-W., Approximation of hyperbolic models for chemosensitive movement, SIAM J. Sci. Comput., 27, 850-872 (2005) · Zbl 1141.35396
[14] Gamba, A.; Ambrosi, D.; Coniglio, A.; de Candia, A.; Di Talia, S.; Giraudo, E.; Serini, G.; Preziosi, L.; Bussolino, F., Percolation, morphogenesis, and Burgers dynamics in blood vessels formation, Phys. Rev. Lett., 90, Article 118101 pp. (2003)
[15] Gasser, I.; Hsiao, L.; Li, H. L., Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors, J. Differ. Equ., 192, 326-359 (2003) · Zbl 1045.35087
[16] Geng, S.; Lin, Y.; Mei, M., Asymptotic behavior of solutions to Euler equations with time-dependent damping in critical case, SIAM J. Math. Anal., 52, 1463-1488 (2020) · Zbl 1437.35119
[17] Hong, G.; Peng, H.; Wang, Z. A.; Zhu, C. J., Nonlinear stability of phase transition steady states to a hyperbolic-parabolic system modeling vascular networks, J. Lond. Math. Soc., 103, 1480-1514 (2021) · Zbl 1470.35049
[18] Hou, F.; Yin, H. C., On the global existence and blowup of smooth solutions to the multidimensional compressible Euler equations with time-depending damping, Nonlinearity, 30, 2485-2517 (2017) · Zbl 1373.35229
[19] Hou, F.; Witt, I.; Yin, H. C., Global existence and blowup of smooth solutions of 3-D potential equations with time-dependent damping, Pac. J. Math., 292, 389-426 (2018) · Zbl 1391.35319
[20] Hou, Q. Q.; Liu, C. J.; Wang, Y. G.; Wang, Z. A., Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case, SIAM J. Math. Anal., 50, 3058-3091 (2018) · Zbl 1394.35025
[21] Hsiao, L.; Liu, T. P., Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143, 599-605 (1992) · Zbl 0763.35058
[22] Huang, F. M.; Marcati, P.; Pan, R. H., Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176, 1-24 (2005) · Zbl 1064.76090
[23] Huang, F.-M.; Mei, M.; Wang, Y., Large-time behavior of solutions to n-dimensional bipolar hydrodynamical model of semiconductors, SIAM J. Math. Anal., 43, 1595-1630 (2011) · Zbl 1228.35053
[24] Huang, F.-M.; Mei, M.; Wang, Y.; Yu, H., Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal., 43, 411-429 (2011) · Zbl 1227.35063
[25] Huang, F.-M.; Mei, M.; Wang, Y.; Yu, H., Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors, J. Differ. Equ., 251, 1305-1331 (2011) · Zbl 1228.35177
[26] Huang, F.-M.; Mei, M.; Wang, Y.; Yang, T., Long-time behavior of solutions for bipolar hydrodynamic model of semiconductors with boundary effects, SIAM J. Math. Anal., 44, 1134-1164 (2012) · Zbl 1248.35020
[27] Huang, F. M.; Pan, R. H., Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166, 359-376 (2003) · Zbl 1022.76042
[28] Ide, K.; Kawashima, S., Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Methods Appl. Sci., 18, 1001-1025 (2008) · Zbl 1160.35346
[29] Jiang, M. N.; Zhu, C. J., Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant, J. Differ. Equ., 246, 50-77 (2009) · Zbl 1169.35039
[30] Jiang, M. N.; Zhu, C. J., Convergence rates to nonlinear diffusion waves for p-system with nonlinear damping on quadrant, Discrete Contin. Dyn. Syst., 23, 887-918 (2009) · Zbl 1170.35058
[31] Jin, H.; Wang, Z. A., Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equ., 260, 162-196 (2006) · Zbl 1323.35001
[32] Kowalczyk, R.; Gamba, A.; Preziosi, L., On the stability of homogeneous solutions to some aggregation models, Discrete Contin. Dyn. Syst., Ser. B, 4, 203-220 (2004) · Zbl 1040.92006
[33] Li, H.; Li, J.; Mei, M.; Zhang, K., Optimal convergence rate to nonlinear diffusion waves for Euler equations with critical overdamping, Appl. Math. Lett., 113, Article 106882 pp. (2021) · Zbl 1458.35315
[34] Li, T.; Wang, Z. A., Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70, 1522-1541 (2009) · Zbl 1206.35041
[35] Liu, Q. Q.; Peng, H. Y.; Wang, Z. A., Asymptotic stability of diffusion waves of a quasi-linear hyperbolic-parabolic model for vasculogenesis, SIAM J. Math. Anal. (2021), accepted
[36] Liu, Y. Q.; Kawashima, S., Asymptotic behavior of solutions to a model system of a radiating gas, Commun. Pure Appl. Anal., 10, 209-223 (2011) · Zbl 1229.35016
[37] Marcati, P.; Mei, M., Convergence to nonlinear diffusion waves for solutions of the initial boundary problem to the hyperbolic conservation laws with damping, Q. Appl. Math., 58, 763-784 (2000) · Zbl 1040.35044
[38] Marcati, P.; Milani, A., The one-dimensional Darcy’s law as the limit of a compressible Euler flow, J. Differ. Equ., 84, 1, 129-147 (1990) · Zbl 0715.35065
[39] Markowich, P.; Ringhofer, C.; Schmeiser, C., Semiconductor Equations (2012), Springer Science & Business Media
[40] Martinez, V.; Wang, Z. A.; Zhao, K., Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67, 1383-1424 (2018) · Zbl 1402.35286
[41] Mei, M., Nonlinear diffusion waves for hyperbolic p-system with nonlinear damping, J. Differ. Equ., 247, 1275-1296 (2009) · Zbl 1177.35134
[42] Mei, M., Best asymptotic profile for hyperbolic p-system with damping, SIAM J. Math. Anal., 42, 1-23 (2010) · Zbl 1218.35141
[43] Natalini, R.; Ribot, M.; Twarogowska, M., A well-balanced numerical scheme for a one dimensional quasilinear hyperbolic model of chemotaxis, Commun. Math. Sci., 12, 1, 13-39 (2014) · Zbl 1310.92008
[44] Natalini, R.; Ribot, M.; Twarogowska, M., A numerical comparison between degenerate parabolic and quasilinear hyperbolic models of cell movements under chemotaxis, J. Sci. Comput., 63, 3, 654-677 (2015) · Zbl 1334.92064
[45] Nishihara, K., Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differ. Equ., 131, 171-188 (1996) · Zbl 0866.35066
[46] Nishihara, K., Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping, J. Differ. Equ., 137, 384-395 (1997) · Zbl 0881.35076
[47] Nishihara, K.; Wang, W.; Yang, T., \( L^p\)-convergence rate to nonlinear diffusion waves for p-system with damping, J. Differ. Equ., 161, 191-218 (2000) · Zbl 0946.35012
[48] Nishihara, K.; Yang, T., Boundary effect on asymptotic behaviour of solutions to the p-system with linear damping, J. Differ. Equ., 156, 439-458 (1999) · Zbl 0933.35121
[49] Pan, R. H., Darcy’s law as long-time limit of adiabatic porous media flow, J. Differ. Equ., 220, 121-146 (2006) · Zbl 1079.76070
[50] Perthame, B., Transport Equations in Biology, Frontiers in Mathematics (2007), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1185.92006
[51] Smoller, J., Shock Waves and Reaction Diffusion Equations (2012), Springer Science & Business Media
[52] van Duyn, C. J.; Peletier, L. A., A class of similarity solutions of the nonlinear diffusion equation, Nonlinear Anal., 1, 223-233 (1976/1977) · Zbl 0394.34016
[53] Xu, D.; Yang, X., The asymptotic profile of solutions to damped Euler equations, Z. Angew. Math. Mech., 101, 10 (2021) · Zbl 07813171
[54] Zhu, C. J., Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping, Sci. China Ser. A, 46, 562-575 (2003) · Zbl 1215.35107
[55] Zhu, C. J.; Jiang, M. N., \( L^p\)-decay rates to nonlinear diffusion waves for p-system with nonlinear damping, Sci. China Ser. A, 49, 721-739 (2006) · Zbl 1113.35122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.