×

Melnikov functions of arbitrary order for piecewise smooth differential systems in \(\mathbb{R}^n\) and applications. (English) Zbl 1495.34026

The authors investigate limit cycles bifurcating from periodic submanifold of \(n\)-dimensonal piecewise smooth dynamical systems with two zones separated by a hyperplane. In order to obtain the maximum number of limit cycles, they obtain arbitrary order Melnikov function by using Faá di Bruno’s Formula. As applications, they study the maximum number of crossing limit cycles bifurcating from an \(n\)-dimensional periodic submanifold caused by non-smooth centers of fold-fold type and perturbations of piecewise smooth Hamiltonian systems. Moreover, they prove that these upper bounds can be reached. Their main results extend some known results in these directions.

MSC:

34A36 Discontinuous ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C29 Averaging method for ordinary differential equations
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Arnold, V. I., Ten problems, Adv. Sov. Math., 1, 1-8 (1990) · Zbl 0729.58002
[2] Berezin, I. S.; Zhidkov, N. P., Computing Methods (1965), Reading, Mass.: Reading, Mass. London · Zbl 0122.12903
[3] di Bernardo, M.; Budd, C. J.; Champneys, A. R.; Kowalczyk, P., Piecewise-Smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences, vol. 163 (2008), Springer Verlag: Springer Verlag London · Zbl 1146.37003
[4] Bézout, É., Théorie générale des équations algébriques (1779), Ph. D. Pierres: Ph. D. Pierres Paris
[5] Buică, A., On the equivalence of the Melnikov functions method and the averaging method, Qual. Theory Dyn. Syst., 16, 547-560 (2017) · Zbl 1392.34052
[6] Buică, A.; Llibre, J., Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math., 128, 7-22 (2004) · Zbl 1055.34086
[7] Buzzi, C. A.; de Carvalho, T.; Teixeira, M. A., Birth of limit cycles bifurcating from a nonsmooth center, J. Math. Pures Appl., 102, 36-47 (2014) · Zbl 1300.34032
[8] Buzzi, C. A.; Lima, M. F.S.; Torregrosa, J., Limit cycles via higher order perturbations for some piecewise differential systems, Physica D, 371, 28-47 (2018) · Zbl 1390.34084
[9] Buzzi, C. A.; Pessoa, C.; Torregrosa, J., Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst., 9, 3915-3936 (2013) · Zbl 1312.37037
[10] Cândido, M. R.; Llibre, J.; Novaes, D. D., Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction, Nonlinearity, 30, 3560-3586 (2017) · Zbl 1381.34057
[11] Carvalho, T.; de Freitas, B. R., Birth of isolated nested cylinders and limit cycles in 3D piecewise smooth vector fields with symmetry, Int. J. Bifur. Chaos, 30, Article 2050098 pp. (2020) · Zbl 1448.37025
[12] Chen, H.; Llibre, J.; Tang, Y., Global dynamics of a SD oscillator, Nonlinear Dyn., 91, 1755-1777 (2018) · Zbl 1390.34119
[13] Christopher, C.; Li, C., Limit Cycles of Differential Equations, Adv. Courses Math. CRM Barcelona (2007), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1359.34001
[14] Du, Z.; Li, Y., Bifurcation of periodic orbits with multiple crossings in a class of planar Filippov systems, Math. Comput. Model., 55, 1072-1082 (2012) · Zbl 1255.34040
[15] Du, Z.; Li, Y.; Zhang, W., Bifurcation of periodic orbits in a class of planar Filippov systems, Nonlinear Anal., 69, 3610-3628 (2008) · Zbl 1181.34015
[16] Filippov, A. F., Differential Equations with Discontinuous Righthand Sides (1988), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0664.34001
[17] Françoise, J. P., Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergod. Theory Dyn. Syst., 16, 87-96 (1996) · Zbl 0852.34008
[18] Françoise, J. P.; He, H.; Xiao, D., The number of limit cycles bifurcating from the period annulus of quasi-homogeneous Hamiltonian systems at any order, J. Differ. Equ., 276, 318-341 (2021) · Zbl 1465.34042
[19] Françoise, J. P.; Pelletier, M., Iterated integrals, Gelfand-Leray residue, and first return mapping, J. Dyn. Control Syst., 12, 357-369 (2006) · Zbl 1108.37043
[20] Fulton, W., Algebraic Curves, Mathematics Lecture Note Series (1974), W.A. Benjamin · Zbl 0181.23901
[21] Gavrilov, L., Higher order Poincare-Pontryagin functions and iterated path integrals, Ann. Fac. Sci. Toulouse, XIV, 663-682 (2005) · Zbl 1104.34024
[22] Giné, J.; Grau, M.; Llibre, J., Averaging theory at any order for computing periodic orbits, Physica D, 250, 58-65 (2013) · Zbl 1267.34073
[23] Gouveia, M. R.A.; Llibre, J.; Novaes, D. D.; Pessoa, C., Piecewise smooth dynamical systems: persistence of periodic solutions and normal forms, J. Differ. Equ., 260, 6108-6129 (2016) · Zbl 1345.34019
[24] Guardia, M.; Seara, T. M.; Teixeira, M. A., Generic bifurcations of low codimension of planar Filippov systems, J. Differ. Equ., 250, 1967-2023 (2011) · Zbl 1225.34046
[25] Han, M.; Romanovski, V. G.; Zhang, X., Equivalence of the Melnikov function method and the averaging method, Qual. Theory Dyn. Syst., 15, 471-479 (2016) · Zbl 1377.34056
[26] Han, M.; Sun, H.; Balanov, Z., Upper estimates for the number of periodic solutions to multi-dimensional systems, J. Differ. Equ., 266, 8281-8293 (2019) · Zbl 1459.34103
[27] Harris, J.; Ermentrout, B., Bifurcations in the Wilson-Cowan equations with nonsmooth firing rate, SIAM J. Appl. Dyn. Syst., 14, 43-72 (2015) · Zbl 1321.34062
[28] Iliev, I. D., The number of limit cycles due to polynomial perturbations of the harmonic oscillator, Math. Proc. Camb. Philos. Soc., 127, 317-322 (1999) · Zbl 0967.34026
[29] Itikawa, J.; Llibre, J.; Novaes, D. D., A new result on averaging theory for a class of discontinuous planar differential systems with applications, Rev. Mat. Iberoam., 33, 1247-1265 (2017) · Zbl 1386.34081
[30] Jebrane, A.; Mardešić, P.; Pelletier, M., A generalization of Françoise’s algorithm for calculating higher order Melnikov functions, Bull. Sci. Math., 126, 705-732 (2002) · Zbl 1029.34081
[31] Jebrane, A.; Żołądek, H., A note on higher order Melnikov functions, Qual. Theory Dyn. Syst., 6, 273-287 (2005) · Zbl 1144.34024
[32] Johnson, W. P., The curious history of Faá di Bruno’s formula, Am. Math. Mon., 109, 217-234 (2002) · Zbl 1024.01010
[33] Kuznetsov, Yu. A.; Rinaldi, S.; Gragnani, A., One parameter bifurcations in planar Filippov systems, Int. J. Bifur. Chaos, 13, 2157-2188 (2003) · Zbl 1079.34029
[34] Li, J., Hilbert’s 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifur. Chaos, 13, 47-106 (2003) · Zbl 1063.34026
[35] Li, S.; Cen, X.; Zhao, Y., Bifurcation of limit cycles by perturbing piecewise smooth integrable non-Hamiltonian systems, Nonlinear Anal., Real World Appl., 34, 140-148 (2017) · Zbl 1354.34070
[36] Li, T.; Llibre, J., On the 16-th Hilbert problem for discontinuous piecewise polynomial Hamiltonian systems, J. Dyn. Differ. Equ. (2021)
[37] Liu, X.; Han, M., Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Int. J. Bifur. Chaos, 20, 1379-1390 (2010) · Zbl 1193.34082
[38] Liu, S.; Han, M.; Li, J., Bifurcation methods of periodic orbits for piecewise smooth systems, J. Differ. Equ., 275, 204-233 (2021) · Zbl 1461.34028
[39] Llibre, J.; Mereu, A. C.; Novaes, D. D., Averaging theory for discontinuous piecewise differential systems, J. Differ. Equ., 258, 4007-4032 (2015) · Zbl 1347.37097
[40] Llibre, J.; Novaes, D. D.; Rodrigues, C. A.B., Averaging theory at any order for computing limit cycles of discontinuous piecewise differential systems with many zones, Physica D, 353-354, 1-10 (2017) · Zbl 1378.34066
[41] Llibre, J.; Novaes, D. D.; Rodrigues, C. A.B., Bifurcations from families of periodic solutions in piecewise differential systems, Physica D, 404, Article 132342 pp. (2020) · Zbl 1500.34031
[42] Llibre, J.; Novaes, D. D.; Teixeira, M. A., Higher order averaging theorem for finding periodic solutions via Brouwer degree, Nonlinearity, 27, 563-583 (2014) · Zbl 1291.34077
[43] Llibre, J.; Novaes, D. D.; Teixeira, M. A., Corrigendum: higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27, 2417 (2014) · Zbl 1304.34079
[44] Llibre, J.; Tang, Y., Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center, Discrete Contin. Dyn. Syst., Ser. B, 24, 1769-1784 (2019) · Zbl 1478.34040
[45] Llibre, J.; Teixeira, M. A.; Zeli, I. O., Birth of limit cycles for a class of continuous and discontinuous differential systems in (d+2)-dimension, Dyn. Syst., 31, 237-250 (2016) · Zbl 1374.34035
[46] Makarenkov, O.; Lamb, J. S.W., Dynamics and bifurcations of nonsmooth systems: a survey, Physica D, 241, 1826-1844 (2012)
[47] Sanders, J. A.; Verhulst, F.; Murdock, J., Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, vol. 59 (2007), Springer: Springer New York · Zbl 1128.34001
[48] Tian, H.; Han, M., Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, J. Differ. Equ., 263, 7448-7474 (2017) · Zbl 1419.37052
[49] Wei, L.; Zhang, X., Normal form and limit cycle bifurcation of piecewise smooth differential systems with a center, J. Differ. Equ., 261, 1399-1428 (2016) · Zbl 1344.34029
[50] Wei, L.; Zhang, X., Averaging theory of arbitrary order for piecewise smooth differential systems and its application, J. Dyn. Differ. Equ., 30, 55-79 (2018) · Zbl 1387.34069
[51] Xiong, Y., Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters, J. Math. Anal. Appl., 421, 260-275 (2015) · Zbl 1405.34026
[52] Yang, P.; Françoise, J. P.; Yu, J., Second order Melnikov functions of piecewise Hamiltonian systems, Int. J. Bifur. Chaos, 30, Article 2050016 pp. (2020) · Zbl 1436.37071
[53] Yang, J.; Han, M.; Huang, W., On Hopf bifurcations of piecewise Hamiltonian systems, J. Differ. Equ., 250, 1026-1051 (2011) · Zbl 1222.34042
[54] Zhang, Z.; Li, B., High order Melnikov functions and the problem of uniformity in global bifurcation, Ann. Mat. Pura Appl., CLXI, 181-212 (1992) · Zbl 0768.34023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.