×

Asynchronous control of discrete-time stochastic bilinear systems with Markovian switchings. (English) Zbl 1482.93670

Summary: This paper is concerned with the problem of asynchronous control for a class of discrete-time Markov systems with multiplicative stochastic white noises. Based on a stability analysis scheme developed from mode-dependent Lyapunov function method, we first derive testable conditions in linear matrix inequality (LMI) setting to ensure the robust stability of the closed-loop system. We then recast the proposed stability conditions into equivalent forms that are later utilised to design a multi-mode asynchronous state-feedback controller (ASFC) that makes the closed-loop system stable. An extension to the case of deficient mode information (i.e. transition rates of the system and the controller are not fully accessible) is also presented. Finally, a model of networked control with DC devices is given to demonstrate the efficacy of the proposed design scheme.

MSC:

93E15 Stochastic stability in control theory
93C55 Discrete-time control/observation systems
93B52 Feedback control
60H40 White noise theory
Full Text: DOI

References:

[1] Ahn, C. K.; Wu, L.; Shi, P., Stochastic stability analysis for 2-D Roesser systems with multiplicative noise, Automatica, 69, 356-363 (2016) · Zbl 1338.93389 · doi:10.1016/j.automatica.2016.03.006
[2] Angeli, D.; Kountouriotis, P. A., A stochastic approach to dynamic demand refrigerator, IEEE Transactions on Control Systems Technology, 20, 3, 581-592 (2012) · doi:10.1109/TCST.2011.2141994
[3] Boukas, E. K., Stochastic switching systems: Analysis and design (2006), Boston, MA: Birkhäuser, Boston, MA · Zbl 1090.93048
[4] Costa, O. L. V.; Fragoso, M. D., Stability results for discrete-time linear systems with Markovian jump parameters, Journal of Mathematical Analysis and Applications, 179, 1, 154-178 (1993) · Zbl 0790.93108 · doi:10.1006/jmaa.1993.1341
[5] Costa, O. L. V.; Fragoso, M. D.; Marques, R. P., Discrete-time Markov jump linear systems (2005), London: Springer-Verlag, London · Zbl 1081.93001
[6] Costa, O. L. V.; Fragoso, M. D.; Todorov, M. G., A detector-based approach for the \(####\) control of Markov jump linear systems with partial information, IEEE Transactions on Automatic Control, 60, 5, 1219-1234 (2015) · Zbl 1360.93761 · doi:10.1109/TAC.2014.2366253
[7] de Oliveira, A. M.; Costa, O. L. V., \(####\)-filtering for discrete-time hidden Markov jump systems, International Journal of Control, 90, 3, 599-615 (2017) · Zbl 1359.93499 · doi:10.1080/00207179.2016.1186844
[8] de Oliveira, A. M.; Costa, O. L. V., Mixed \(####\) control of hidden Markov jump systems, International Journal of Robust and Nonlinear Control, 28, 4, 1261-1280 (2018) · Zbl 1390.93722 · doi:10.1002/rnc.3952
[9] Dragan, V., Robust stabilisation of discrete-time time-varying linear systems with Markovian switching and nonlinear parametric uncertainties, International Journal of Systems Science, 45, 7, 1508-1517 (2014) · Zbl 1290.93154 · doi:10.1080/00207721.2013.860643
[10] Dzung, N. T.; Hien, L. V., Stochastic stabilization of discrete-time Markov jump systems with generalized delay and deficient transition rates, Circuits, Systems, and Signal Processing, 36, 6, 2521-2541 (2017) · Zbl 1370.93306 · doi:10.1007/s00034-016-0410-8
[11] Gray, W. S.; González, O. R.; Doğan, M., Stability analysis of digital linear flight controllers subject to electromagnetic disturbances, IEEE Transactions on Aerospace and Electronic Systems, 36, 4, 1204-1218 (2000) · doi:10.1109/7.892669
[12] Hien, L. V., An LP approach to full-order and reduced-order state estimations of positive Markov jump systems with delay, International Journal of Systems Science, 48, 12, 2534-2543 (2017) · Zbl 1372.93193 · doi:10.1080/00207721.2017.1324066
[13] Hien, L. V.; Huong, N. T. L., Almost sure estimation and synthesis of ultimate bounds for discrete-time Markov jump linear systems, International Journal of Control (2017)
[14] Hien, L. V.; Trinh, H., Observer-based control of 2-D Markov jump systems, IEEE Transactions on Circuits and Systems-II: Express Briefs, 64, 11, 1322-1326 (2018) · doi:10.1109/TCSII.2017.2675898
[15] Kallenberg, O., Foundations of modern probability (2002), New York, NY: Springer-Verlag, New York, NY · Zbl 0996.60001
[16] Kurose, J. F.; Ross, K. W., Computer networking: A top-down approach (2010), New York, NY: Addison-Wesley, New York, NY
[17] Li, X.; Lam, J.; Gao, H.; Xiong, J., \(####\) and \(####\) filtering for linear systems with uncertain Markov transitions, Automatica, 67, 252-266 (2016) · Zbl 1335.93126 · doi:10.1016/j.automatica.2016.01.016
[18] Liang, X.; Xu, J.; Zhang, H., Discrete-time LQG control with input delay and multiplicative noise, IEEE Transactions on Aerospace and Electronic Systems, 53, 6, 3079-3090 (2017) · doi:10.1109/TAES.2017.2727358
[19] Liu, M.; Zhang, L.; Shi, P.; Karimi, H. R., Robust control of stochastic systems against bounded disturbances with application to flight control, IEEE Transactions on Industrial Electronics, 61, 3, 1504-1515 (2014) · doi:10.1109/TIE.2013.2258293
[20] Losada, M. G.; Rubio, F. R.; Bencomo, S. D., Asynchronous control for networked systems (2015), Cham: Springer, Cham · Zbl 1352.93004
[21] Lu, Z.; Guo, G., Control with sensors/actuators assigned by Markov chains: Transition rates partially unknown, IET Control Theory & Applications, 7, 8, 1088-1097 (2013) · doi:10.1049/iet-cta.2012.0879
[22] Mao, Z.; Zhan, Y.; Tao, G.; Jiang, B.; Yan, X. G., Sensor fault detection for rail vehicle suspension systems with disturbances and stochastic noises, IEEE Transactions on Vehicular Technology, 66, 6, 4691-4705 (2017) · doi:10.1109/TVT.2016.2628054
[23] Mariton, M., Jump linear systems in automatic control (1990), New York: Marcel Dekker, New York
[24] Narendra, K. S.; Tripathi, S., Identification and optimization of aircraft dynamics, Journal of Aircraft, 10, 4, 193-199 (1973) · doi:10.2514/3.44364
[25] Oliveira, R.; Vargas, A. N.; do Val, J.; Peres, P., Mode-independent \(####\)-control of a DC motor modeled as a Markov jump linear system, IEEE Transactions on Control Systems Technology, 22, 5, 1915-1919 (2014) · doi:10.1109/TCST.2013.2293627
[26] Petrou, M.; Petrou, C., Image processing: The fundamentals (2010), Chichester: John Wiley & Sons, Chichester · Zbl 1191.68792
[27] Qi, Q.; Zhang, H., Output feedback control and stabilization for multiplicative noise systems with intermittent observations, IEEE Transactions on Cybernetics, 48, 7, 2128-2138 (2018) · doi:10.1109/TCYB.2017.2728078
[28] Sakthivel, R.; Rathika, M.; Santra, S.; Muslim, M., Observer-based dissipative control for Markovian jump systems via delta operators, International Journal of Systems Science, 48, 2, 247-256 (2017) · Zbl 1359.93455 · doi:10.1080/00207721.2016.1177131
[29] Sathananthan, S.; Beane, C.; Ladde, G. S.; Keel, L. H., Stabilization of stochastic systems under Markovian switching, Nonlinear Analysis: Hybrid Systems, 4, 4, 804-817 (2010) · Zbl 1203.93183
[30] Sathananthana, S.; Knapa, M.; Keel, L. H., Optimal guaranteed cost control of stochastic discrete-time systems with states and input dependent noise under Markovian switching, Stochastic Analysis and Applications, 31, 5, 876-893 (2013) · Zbl 1272.93132 · doi:10.1080/07362994.2013.817251
[31] Sathishkumar, M.; Sakthivel, R.; Wang, C.; Kaviarasan, B.; Anthoni, S. M., Non-fragile filtering for singular Markovian jump systems with missing measurements, Signal Processing, 142, 125-136 (2018) · doi:10.1016/j.sigpro.2017.07.012
[32] Shi, P.; Li, F., A survey on Markovian jump systems: Modeling and design, International Journal of Control, Automation and Systems, 13, 1, 1-16 (2015) · doi:10.1007/s12555-014-0576-4
[33] Ugrinovskii, V. A.; Pota, H. R., Decentralized control of power systems via robust control of uncertain Markov jump parameter systems, International Journal of Control, 78, 9, 662-677 (2005) · Zbl 1121.93362 · doi:10.1080/00207170500105384
[34] VanAntwerp, J. G.; Braatz, R. D., A tutorial on linear and bilinear matrix inequalities, Journal of Process Control, 10, 4, 363-385 (2000) · doi:10.1016/S0959-1524(99)00056-6
[35] Vargas, A. N.; Sampaio, L. P.; Acho, L.; Zhang, L.; do Val, J. B.R., Optimal control of DC-DC buck converter via linear systems with inaccessible Markovian jumping modes, IEEE Transactions on Control Systems Technology, 24, 5, 1820-1827 (2016) · doi:10.1109/TCST.2015.2508959
[36] Wu, Z. G.; Shi, P.; Shu, Z.; Su, H.; Lu, R., Passivity-based asynchronous control for Markov jump systems, IEEE Transactions on Automatic Control, 62, 4, 2020-2025 (2017) · Zbl 1366.93611 · doi:10.1109/TAC.2016.2593742
[37] Wu, Z.; Shi, P.; Su, H.; Chu, J., Asynchronous \(####-####\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities, Automatica, 50, 1, 180-186 (2014) · Zbl 1417.93317 · doi:10.1016/j.automatica.2013.09.041
[38] Xu, S.; Chen, T., Robust \(####\) control for uncertain discrete-time stochastic bilinear systems with Markovian switching, International Journal of Robust and Nonlinear Control, 15, 5, 201-217 (2005) · Zbl 1078.93025 · doi:10.1002/rnc.981
[39] Zhang, H.; Gray, W. S.; González, O. R., Performance analysis of digital flight control systems with rollback error recovery subject to simulated neutron-induced upsets, IEEE Transactions on Control Systems Technology, 16, 1, 46-59 (2008) · doi:10.1109/TCST.2007.903079
[40] Zhang, Y.; Wang, C., Robust stochastic stability of uncertain discrete-time impulsive Markovian jump delay systems with multiplicative noises, International Journal of Systems Science, 46, 12, 2210-2220 (2015) · Zbl 1332.93368 · doi:10.1080/00207721.2013.859329
[41] Zhang, L.; Yang, T.; Shi, P.; Zhu, Y., Analysis and design of Markov jump systems with complex transition probabilities (2016), Basel: Springer, Basel · Zbl 1343.93003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.