×

A gradient based resolution strategy for a PDE-constrained optimization approach for 3D-1D coupled problems. (English) Zbl 1478.65114

Summary: Coupled 3D-1D problems arise in many practical applications, in an attempt to reduce the computational burden in simulations where cylindrical inclusions with a small section are embedded in a much larger domain. Nonetheless the resolution of such problems can be non trivial, both from a mathematical and a geometrical standpoint. Indeed 3D-1D coupling requires to operate in non standard function spaces, and, also, simulation geometries can be complex for the presence of multiple intersecting domains. Recently, a PDE-constrained optimization based formulation has been proposed for such problems, proving a well posed mathematical formulation and allowing for the use of non conforming meshes for the discrete problem. Here an unconstrained optimization formulation of the problem is derived and an efficient gradient based solver is proposed for such formulation, along with a suitable preconditioner to speed up the iterative solver. Some numerical tests on quite complex configurations are discussed to show the viability of the method .

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
49M41 PDE constrained optimization (numerical aspects)
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
86-08 Computational methods for problems pertaining to geophysics

Software:

TetGen

References:

[1] Berrone, S.; D’Auria, A.; Scialò, S., An optimization approach for flow simulations in poro-fractured media with complex geometries, Comput. Geosci. (2021) · Zbl 1460.65140 · doi:10.1007/s10596-020-10029-8
[2] Berrone, S.; Grappein, D.; Pieraccini, S.; Scialò, S., A three-field based optimization formulation for flow simulations in networks of fractures on non-conforming meshes, SIAM J. Sci. Comput., 43, 2, B381-B404 (2021) · doi:10.1137/20M1319188
[3] Berrone, S.; Grappein, D.; Scialò, S., 3D-1D coupling on non conforming meshes via three-field optimization based domain decomposition, J. Comput. Phys. (2021) · Zbl 1537.65184 · doi:10.1016/j.jcp.2021.110738
[4] Berrone, S.; Pieraccini, S.; Scialò, S., An optimization approach for large scale simulations of discrete fracture network flows, J. Comput. Phys., 256, 838-853 (2014) · Zbl 1349.76806 · doi:10.1016/j.jcp.2013.09.028
[5] Berrone, S.; Scialò, S.; Vicini, F., Parallel meshing, discretization and computation of flow in massive Discrete Fracture Networks, SIAM J. Sci. Comput., 41, 4, C317-C338 (2019) · Zbl 1433.65277 · doi:10.1137/18M1228736
[6] Cerroni, D.; Laurino, F.; Zunino, P., Mathematical analysis, finite element approximation and numerical solvers for the interaction of 3d reservoirs with 1d wells, GEM - Int. J. Geomath., 10, 1 (2019) · Zbl 1419.76448 · doi:10.1007/s13137-019-0118-6
[7] D’Angelo, C., Finite element approximation of elliptic problems with dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems, SIAM J. Numer. Anal., 50, 1, 194-215 (2012) · Zbl 1246.65215 · doi:10.1137/100813853
[8] Ern, A.; Guermond, J., Theory and practice of finite elements, Appl. Mat. Sci, 59, 781 (2004) · Zbl 1059.65103
[9] Gjerde, I.; Kumar, K.; Nordbotten, J., A singularity removal method for coupled 1d-3d flow models, Comput. Geosci., 24, 443-457 (2020) · Zbl 1434.76067 · doi:10.1007/s10596-019-09899-4
[10] Gjerde, I.G., Kumar, K., Nordbotten, J.M.: Well modelling by means of coupled 1d-3d flow models. In: ECMOR XVI - 16th European Conference on the Mathematics of Oil Recovery (2018)
[11] Gjerde, Ingeborg G., Kumar, Kundan, Nordbotten, Jan M., Wohlmuth, Barbara: Splitting method for elliptic equations with line sources. ESAIM: M2AN 53(5), 1715-1739 (2019). doi:10.1051/m2an/2019027 · Zbl 1433.35129
[12] Koch, T.; Heck, K.; Schröder, N.; Class, H.; Helmig, R., A new simulation framework for soil-root interaction, evaporation, root growth, and solute transport, Vadose Zone J. (2018) · doi:10.2136/vzj2017.12.0210
[13] Köppl, T.; Vidotto, E.; Wohlmuth, B., A 3d-1d coupled blood flow and oxygen transport model to generate microvascular networks, Int. J. Numer. Methods Biomed. Eng., 36, 10, e3386 (2020) · doi:10.1002/cnm.3386
[14] Köppl, T.; Vidotto, E.; Wohlmuth, B.; Zunino, P., Mathematical modeling, analysis and numerical approximation of second-order elliptic problems with inclusions, Math. Models Methods Appl. Sci., 28, 5, 953-978 (2018) · Zbl 1393.35172 · doi:10.1142/S0218202518500252
[15] Laurino, F.; Zunino, P., Derivation and analysis of coupled pdes on manifolds with high dimensionality gap arising from topological model reduction, ESAIM: M2AN, 53, 6, 2047-2080 (2019) · Zbl 1435.35155 · doi:10.1051/m2an/2019042
[16] Llau, A.; Jason, L.; Dufour, F.; Baroth, J., Finite element modelling of 1d steel components in reinforced and prestressed concrete structures, Eng. Struct., 127, 769-783 (2016) · doi:10.1016/j.engstruct.2016.09.023
[17] Nocedal, J.; Wright, SJ, Numerical optimization (2006), New York, USA: Springer, New York, USA · Zbl 1104.65059
[18] Notaro, D., Cattaneo, L., Formaggia, L., Scotti, A., Zunino, P.: A Mixed Finite Element Method for Modeling the Fluid Exchange Between Microcirculation and Tissue Interstitium, pp. 3-25. Springer International Publishing (2016). doi:10.1007/978-3-319-41246-7_1 · Zbl 1371.76095
[19] Pieraccini, S., Uncertainty quantification analysis in discrete fracture network flow simulations, Int. J. Geomath., 11, 7452 (2020) · Zbl 1437.65198 · doi:10.1007/s13137-020-0148-0
[20] Schröder, N.; Javaux, M.; Vanderborght, J.; Steffen, B.; Vereecken, H., Effect of root water and solute uptake on apparent soil dispersivity: A simulation study, Vadose Zone J., 11, 3, 9 (2012) · doi:10.2136/vzj2012.0009
[21] Si, H., TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw., 41, 2, 1-36 (2015) · Zbl 1369.65157 · doi:10.1145/2629697
[22] Steinbrecher, I.; Mayr, M.; Grill, M.; Kremheller, J.; Meier, C.; Popp, A., A mortar-type finite element approach for embedding 1d beams into 3d solid volumes, Comput. Mech., 66, 1377-1398 (2020) · Zbl 1465.74167 · doi:10.1007/s00466-020-01907-0
[23] Tornberg, AK; Engquist, B., Numerical approximations of singular source terms in differential equations, J. Comput. Phys., 200, 2, 462-488 (2004) · Zbl 1115.76392 · doi:10.1016/j.jcp.2004.04.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.