×

Multi-scale hydro-morphodynamic modelling using mesh movement methods. (English) Zbl 1478.86006

Summary: Hydro-morphodynamic modelling is an important tool that can be used in the protection of coastal zones. The models can be required to resolve spatial scales ranging from sub-metre to hundreds of kilometres and are computationally expensive. In this work, we apply mesh movement methods to a depth-averaged hydro-morphodynamic model for the first time, in order to tackle both these issues. Mesh movement methods are particularly well-suited to coastal problems as they allow the mesh to move in response to evolving flow and morphology structures. This new capability is demonstrated using test cases that exhibit complex evolving bathymetries and have moving wet-dry interfaces. In order to be able to simulate sediment transport in wet-dry domains, a new conservative discretisation approach has been developed as part of this work, as well as a sediment slide mechanism. For all test cases, we demonstrate how mesh movement methods can be used to reduce discretisation error and computational cost. We also show that the optimum parameter choices in the mesh movement monitor functions are fairly predictable based upon the physical characteristics of the test case, facilitating the use of mesh movement methods on further problems.

MSC:

86-10 Mathematical modeling or simulation for problems pertaining to geophysics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
86A05 Hydrology, hydrography, oceanography

Software:

Firedrake

References:

[1] Amoudry, LO., Souza, AJ.: Deterministic coastal morphological and sediment transport modeling: A review and discussion. Reviews of Geophysics 49(2) (2011)
[2] Apsley, DD; Stansby, PK, Bed-load sediment transport on large slopes: model formulation and implementation within a RANS solver, J. Hydraul. Eng., 134, 10, 1440-1451 (2008) · doi:10.1061/(ASCE)0733-9429(2008)134:10(1440)
[3] Avdis, A.; Candy, AS; Hill, J.; Kramer, SC; Piggott, MD, Efficient unstructured mesh generation for marine renewable energy applications, Renew. Energy, 116, 842-856 (2018) · doi:10.1016/j.renene.2017.09.058
[4] Awanou, G., Quadratic mixed finite element approximations of the Monge-Ampère equation in 2d, Calcolo, 52, 4, 503-518 (2015) · Zbl 1331.65158 · doi:10.1007/s10092-014-0127-7
[5] Balzano, A., Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models, Coastal Eng., 34, 1-2, 83-107 (1998) · doi:10.1016/S0378-3839(98)00015-5
[6] Barthélemy, E., Nonlinear shallow water theories for coastal waves, Surv. Geophys., 25, 3-4, 315-337 (2004) · doi:10.1007/s10712-003-1281-7
[7] Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: Basic analysis and examples. Citeseer (1996) · Zbl 0868.65076
[8] Becker, R.; Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, 10, 1-102 (2001) · Zbl 1105.65349 · doi:10.1017/S0962492901000010
[9] Benkhaldoun, F.; El Mahi, I.; Sari, S.; Seaid, M., An unstructured finite volume method for coupled models of suspended sediment and bed-load transport in shallow water flows, Int. J. Numer. Methods Fluids, 72, 9, 967-993 (2013) · Zbl 1455.76103 · doi:10.1002/d.3771
[10] Budd, CJ; Williams, J., Moving mesh generation using the parabolic Monge-Ampère equation, SIAM J. Sci. Comput., 31, 5, 3438-3465 (2009) · Zbl 1200.65099 · doi:10.1137/080716773
[11] Budd, CJ; Huang, W.; Russell, RD, Adaptivity with moving grids, Acta Numerica (2009) · Zbl 1181.65122 · doi:10.1017/S0962492906400015
[12] Budd, CJ; Cullen, MJP; Walsh, EJ, Monge-Ampére based moving mesh methods for numerical weather prediction, with applications to the eady problem, J. Comput. Phys., 236, 247-270 (2013) · Zbl 1286.65178 · doi:10.1016/j.jcp.2012.11.014
[13] Clare, M.C.A., Kramer, S.C., Cotter, C.J., Piggott, M.D.: Calibration, inversion and sensitivity analysis for hydro-morphodynamic models through the application of adjoint methods (2021a) doi:10.31223/X5F327
[14] Clare, MCA; Percival, JR; Angeloudis, A.; Cotter, CJ; Piggott, MD, Hydro-morphodynamics 2D modelling using a discontinuous Galerkin discretisation, Comput. Geosci., 146, 104658 (2021) · doi:10.1016/j.cageo.2020.104658
[15] Comblen, R.; Lambrechts, J.; Remacle, JF; Legat, V., Practical evaluation of five partly discontinuous finite element pairs for the non-conservative shallow water equations, Int. J. Numer. Methods Fluids, 63, 6, 701-724 (2010) · Zbl 1423.76220
[16] Delandmeter, P.: Discontinuous Galerkin finite element modelling of geophysical and environmental flows. PhD thesis, Universite catholique de Louvain (2017)
[17] Donea, J., Huerta, A., Ponthot, J.P., Rodríguez-Ferran, A.: Arbitrary Lagrangian-Eulerian methods. Encyclopedia of Computational Mechanics Second Edition pp 1-23 (2017)
[18] Farhat, C.; Degand, C.; Koobus, B.; Lesoinne, M., Torsional springs for two-dimensional dynamic unstructured fluid meshes, Comput. Methods Appl. Mech. Eng., 163, 1-4, 231-245 (1998) · Zbl 0961.76070 · doi:10.1016/S0045-7825(98)00016-4
[19] Funke, S.; Farrell, P.; Piggott, M., Reconstructing wave profiles from inundation data, Comput. Methods Appl. Mech. Eng., 322, 167-186 (2017) · Zbl 1439.76068 · doi:10.1016/j.cma.2017.04.019
[20] Geology Cafe: Chapter 11 - rivers, streams, and water underground. http://geologycafe.com/class/chapter11.html, accessed on 2020-09-11 (2015)
[21] Goto, K.; Takahashi, J.; Oie, T.; Imamura, F., Remarkable bathymetric change in the nearshore zone by the 2004 Indian Ocean tsunami: Kirinda Harbor, Sri Lanka, Geomorphology, 127, 1-2, 107-116 (2011) · doi:10.1016/j.geomorph.2010.12.011
[22] Harris, DL; Rovere, A.; Casella, E.; Power, H.; Canavesio, R.; Collin, A.; Pomeroy, A.; Webster, JM; Parravicini, V., Coral reef structural complexity provides important coastal protection from waves under rising sea levels, Sci. Adv., 4, 2, eaao4350 (2018) · doi:10.1126/sciadv.aao4350
[23] Huang, W.; Ren, Y.; Russell, RD, Moving mesh partial differential equations (MMPDEs) based on the equidistribution principle, SIAM J. Numer. Anal., 31, 3, 709-730 (1994) · Zbl 0806.65092 · doi:10.1137/0731038
[24] Hudson, J.; Sweby, PK, A high-resolution scheme for the equations governing 2D bed-load sediment transport, Int. J. Numer. Methods Fluids, 47, 10-11, 1085-1091 (2005) · Zbl 1064.76072 · doi:10.1002/fld.853
[25] Kärnä, T.; de Brye, B.; Gourgue, O.; Lambrechts, J.; Comblen, R.; Legat, V.; Deleersnijder, E., A fully implicit wetting-drying method for DG-FEM shallow water models, with an application to the Scheldt Estuary, Comput. Methods Appl. Mech. Eng., 200, 5-8, 509-524 (2011) · Zbl 1225.76196 · doi:10.1016/j.cma.2010.07.001
[26] Kärnä, T., Kramer, S.C., Mitchell, L., Ham, D.A., Piggott, M.D., Baptista, A.M.: Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations. arXiv preprint arXiv:1711.08552 (2017)
[27] Kazhyken, K.; Videman, J.; Dawson, C., Discontinuous Galerkin methods for a dispersive wave hydro-sediment-morphodynamic model, Comput. Methods Appl. Mech. Eng. (2021) · Zbl 1506.76015 · doi:10.1016/j.cma.2021.1136842010.06167
[28] Kobayashi, N.; Lawrence, AR, Cross-shore sediment transport under breaking solitary waves, J. Geophys. Res.: Oceans (2004) · doi:10.1029/2003jc002084
[29] Lakkis, O.; Pryer, T., A finite element method for nonlinear elliptic problems, SIAM J. Sci. Comput., 35, 4, A2025-A2045 (2013) · Zbl 1362.65126 · doi:10.1137/120887655
[30] Li, L.; Huang, Z., Modeling the change of beach profile under tsunami waves: a comparison of selected sediment transport models, J. Earthq. Tsunami (2013) · doi:10.1142/S1793431113500012
[31] Maddison, J.R., Panourgias, I., Farrell, PE.: libsupermesh version 1.0. Technical report, University of Edinburgh (2017)
[32] Mayne, D.A., Usmani, A.S., Crapper, M.: An Adaptive Finite Element Solution for Cohesive Sediment Transport. In: Proceedings in Marine Science, vol 5, Elsevier, pp 627-641, doi:10.1016/S1568-2692(02)80044-4 (2002)
[33] McManus, T.M., Percival, J.R., Yeager, B.A., Barral, N., Gorman, G.J., Piggott, M.D.: Moving mesh methods in Fluidity and Firedrake. Technical Report July, Imperial College London, (2017) doi:10.13140/RG.2.2.27670.24648
[34] McRae, ATT; Cotter, CJ; Budd, CJ, Optimal-transport-based mesh adaptivity on the plane and sphere using finite elements, SIAM J. Sci. Comput., 40, 2, 1121-1148 (2018) · Zbl 1448.65143 · doi:10.1137/16M1109515
[35] Papanicolaou, ATN; Elhakeem, M.; Krallis, G.; Prakash, S.; Edinger, J., Sediment transport modeling review - current and future developments, J. Hydraul. Eng., 134, 1, 1-14 (2008) · doi:10.1061/(ASCE)0733-9429(2008)134:1(1)
[36] Piggott, MD; Pain, CC; Gorman, GJ; Power, PW; Goddard, AJH, \(h, r\), and \(hr\) adaptivity with applications in numerical ocean modelling, Ocean Model., 10, 95-113 (2006) · doi:10.1016/j.ocemod.2004.07.007
[37] Piggott, MD; Gorman, GJ; Pain, CC; Allison, PA; Candy, AS; Martin, BT; Wells, MR, A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes, Int. J. Numer. Methods Fluids, 56, 8, 1003-1015 (2008) · Zbl 1220.76045 · doi:10.1002/fld.1663
[38] Piggott, M.D., Pain, C.C., Gorman, G.J., Marshall, D.P., Killworth, P.D.: Unstructured Adaptive Meshes for Ocean Modeling. In: Hasumi, H. (ed.) Hecht MW, pp 383-408. Ocean Modeling in an Eddying Regime, American Geophysical Union, USA (2008)
[39] Piggott, MD; Farrell, PE; Wilson, CR; Gorman, GJ; Pain, CC, Anisotropic mesh adaptivity for multi-scale ocean modelling, Philos. Trans. Royal Soc. A: Math., Phys. Eng. Sci., 367, 1907, 4591-4611 (2009) · Zbl 1192.86009 · doi:10.1098/rsta.2009.0155
[40] Rathgeber, F.; Ham, DA; Mitchell, L.; Lange, M.; Luporini, F.; McRae, AT; Bercea, GT; Markall, GR; Kelly, PH, Firedrake: automating the finite element method by composing abstractions, ACM Trans. Math. Softw. (TOMS), 43, 3, 1-27 (2016) · Zbl 1396.65144 · doi:10.1145/2998441
[41] Tassi, P., Villaret, C.: Sisyphe v6.3 User’s Manual. EDF R&D, Chatou, France (2014)
[42] Thacker, WC, Some exact solutions to the nonlinear shallow-water wave equations, J. Fluid Mech., 107, 499-508 (1981) · Zbl 0462.76023 · doi:10.1017/S0022112081001882
[43] Van Rijn, LC, Storm Surge Barrier Oosterschelde-Computation of Siltation in Dredged Trenches: Semi-empirical Model for the Flow in Dredged Trenches (1980), Delft, The Netherlands: Deltares, Delft, The Netherlands
[44] Van Rijn, LC, Sediment Transport, Part II: Suspended Load Transport, J. Hydraul. Eng., 110, 11, 1613-1641 (1984) · doi:10.1061/(ASCE)0733-9429(1984)110:11(1613)
[45] Villaret, C.; Kopmann, R.; Wyncoll, D.; Riehme, J.; Merkel, U.; Naumann, U., First-order uncertainty analysis using Algorithmic Differentiation of morphodynamic models, Comput. Geosci., 90, 144-151 (2016) · doi:10.1016/j.cageo.2015.10.012
[46] Vouriot, CVM; Angeloudis, A.; Kramer, SC; Piggott, MD, Fate of large-scale vortices in idealized tidal lagoons, Environ. Fluid Mech., 19, 329-348 (2019) · doi:10.1007/s10652-018-9626-4
[47] Wallwork, JG; Barral, N.; Kramer, SC; Ham, DA; Piggott, MD, Goal-oriented error estimation and mesh adaptation for shallow water modelling, Springer Nat. Appl. Sci., 2, 1053-1063 (2020) · doi:10.1007/s42452-020-2745-9
[48] Weller, H.; Browne, P.; Budd, C.; Cullen, M., Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge-Ampère type equation, J. Comput. Phys., 308, 102-123 (2016) · Zbl 1351.86008 · doi:10.1016/j.jcp.2015.12.018
[49] White, AB Jr, On selection of equidistributing meshes for two-point boundary-value problems, SIAM J. Numer. Anal., 16, 3, 472-502 (1979) · Zbl 0407.65036 · doi:10.1137/0716038
[50] Zhou, F.; Chen, G.; Huang, Y.; Yang, JZ; Feng, H., An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography, Water Resour. Res., 49, 4, 1914-1928 (2013) · doi:10.1002/wrcr.20179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.