×

A forecasting model for the porosity variation during the carbonation process. (English) Zbl 1492.76106

Summary: In this paper we introduce a mathematical model of concrete carbonation Portland cement specimens. The main novelty of this work is to describe the intermediate chemical reactions, occurring in the carbonation process of concrete, involving the interplay of carbon dioxide with the water present into the pores. Indeed, the model here proposed, besides describing transport and diffusion processes inside the porous medium, takes into account both fast and slow phenomena as intermediate reactions of the carbonation process. As a model validation, by using the mathematical based simulation algorithm we are able to describe the effects of the interaction between concrete and \(\mathrm{CO}_2\) on the porosity of material as shown by the numerical results in substantial accordance with experimental results of accelerated carbonation taken from literature. We also considered a further reaction: the dissolution of calcium carbonate under an acid environment. As a result, a trend inversion in the evolution of porosity can be observed for long exposure times. Such an increase in porosity results in the accessibility of solutions and pollutants within the concrete leading to an higher permeability and diffusivity thus significantly affecting its durability.

MSC:

76S05 Flows in porous media; filtration; seepage
35R37 Moving boundary problems for PDEs
65N06 Finite difference methods for boundary value problems involving PDEs

References:

[1] Alì, G.; Furuholt, V.; Natalini, R.; Torcicollo, I., A mathematical model of sulphite chemical aggression of limestones with high permeability: part I modeling and qualitative analysis, Transp. Porous Med., 69, 1, 109-122 (2007) · doi:10.1007/s11242-006-9067-2
[2] Anstice, DJ; Page, CL; Page, MM, The pore solution phase of carbonated cement pastes, Cem. Concr. Res., 35, 2, 377-83 (2005) · doi:10.1016/j.cemconres.2004.06.041
[3] Ahsraf, W., Carbonation of cement-based materials: challenges and opportunities, Constr. Build. Mater., 120, 1, 558-570 (2016)
[4] Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, JM; Charpentier, T.; Moskura, M.; Bourbon, X., Comparison between natural and accelerated carbonation (3 · doi:10.1016/j.cemconres.2018.04.012
[5] Ball, P., Water: an enduring mystery, Nature, 452, 291-292 (2008) · doi:10.1038/452291a
[6] Bretti, G.; Ceseri, M.; Natalini, R., A moving boundary problem for reaction and diffusion processes in concrete: carbonation advancement and carbonation shrinkage, Discrete Continuous Dynam. Syst. Ser., 15, 8, 2033-2052 (2022) · Zbl 1513.76139 · doi:10.3934/dcdss.2022092
[7] Chang, CF; Chen, JW, The experimental investigation of concrete carbonation depth, Cem. Concr. Res., 36, 9, 1760-7 (2006) · doi:10.1016/j.cemconres.2004.07.025
[8] Chapwanya, M.; Stockie, JM; Liu, W., A model for reactive porous transport during re-wetting of hardened concrete, J. Eng. Math., 65, 1, 53-73 (2009) · Zbl 1176.76139 · doi:10.1007/s10665-009-9268-0
[9] Chen, T.; Gao, X.; Qin, L., Mathematical modeling of accelerated carbonation curing of Portland cement paste at early age, Cem. Concr. Res., 120, 187-97 (2019) · doi:10.1016/j.cemconres.2019.03.025
[10] Coppola, L., Concretum (2007), New York: McGraw-Hill, New York
[11] Coto, B.; Martos, C.; Peña, JL; Rodríguez, R.; Pastor, G., Effects in the solubility of CaCO3: experimental study and model description, Fluid Phase Equilibria, 25, 324, 1-7 (2012) · doi:10.1016/j.fluid.2012.03.020
[12] Freddi, F.; Mingazzi, L., Phase-field simulations of cover cracking in corroded RC beams, Procedia Struct. Integr., 33, 371-384 (2021) · doi:10.1016/j.prostr.2021.10.045
[13] Galan, I.; Andrade, C.; Castellote, M., Natural and accelerated CO2 binding kinetics in cement paste at different relative humidities, Cem. Concr. Res., 1, 49, 21-8 (2013) · doi:10.1016/j.cemconres.2013.03.009
[14] García-González, CA; Hidalgo, A.; Andrade, C.; Alonso, MC; Fraile, J.; López-Periago, AM; Domingo, C., Modification of composition and microstructure of Portland cement pastes as a result of natural and supercritical carbonation procedures, Ind. Eng. Chem. Res., 45, 14, 4985-4992 (2006) · doi:10.1021/ie0603363
[15] Groves, GW; Rodway, DI; Richardson, IG, The carbonation of hardened cement pastes, Adv. Cem. Res., 3, 11, 117-25 (1990) · doi:10.1680/adcr.1990.3.11.117
[16] Hussain, S.; Bhunia, D.; Singh, SB, An experimental investigation of accelerated carbonation on properties of concrete, Eng. J., 20, 2, 29-38 (2016) · doi:10.4186/ej.2016.20.2.29
[17] Ishida, T.; Li, CH, Modeling of carbonation based on thermo-hygro physics with strong coupling of mass transport and equilibrium in micro-pore structure of concrete, J. Adv. Concr. Technol., 6, 2, 303-16 (2008) · doi:10.3151/jact.6.303
[18] Kashef-Haghighi, S.; Shao, Y.; Ghoshal, S., Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing, Cem. Concr. Res., 1, 67, 1 (2015) · doi:10.1016/j.cemconres.2014.07.020
[19] Leemann, A.; Moro, F., Carbonation of concrete: the role of CO 2 concentration, relative humidity and CO 2 buffer capacity, Mater. Struct., 50, 1, 1-4 (2017) · doi:10.1617/s11527-016-0917-2
[20] Mara, A.: Studio della precipitazione del carbonato di calcio. Master degree, Politecnico di Torino (2019)
[21] Meyer, C.: Concrete as a green building material. In: Construction Materials Mindess Symposium (2005 Aug)
[22] Mitchell, MJ; Jensen, OE; Cliffe, KA; Maroto-Valer, MM, A model of carbon dioxide dissolution and mineral carbonation kinetics, Proc. R. Soc. A Math. Phys. Eng. Sci., 466, 2117, 1265-90 (2010) · Zbl 1193.86004
[23] Ogino, T.; Suzuki, T.; Sawada, K., The formation and transformation mechanism of calcium carbonate in water, Geochim et Cosmochimica Acta, 51, 10, 2757-2767 (1987) · doi:10.1016/0016-7037(87)90155-4
[24] Pan, G.; Shen, Q.; Li, J., Microstructure of cement paste at different carbon dioxide concentrations, Mag. Concr. Res., 70, 3, 154-62 (2018) · doi:10.1680/jmacr.17.00106
[25] Papadakis, VG; Vayenas, CG; Fardis, MN, A reaction engineering approach to the problem of concrete carbonation, AIChE J., 35, 10, 1639-50 (1989) · doi:10.1002/aic.690351008
[26] Pedeferri, P.: Corrosione e protezione dei materiali metallici. Polipress (2010)
[27] Peter, MA; Muntean, A.; Meier, SA; Böhm, M., Competition of several carbonation reactions in concrete: a parametric study, Cem. Concr. Res., 38, 12, 1385-93 (2008) · doi:10.1016/j.cemconres.2008.09.003
[28] Plusquellec, G.; Geiker, MR; Lindgard, J.; Duchesne, J.; Fournier, B.; De Weerdt, K., Determination of the pH and the free alkali metal content in the pore solution of concrete: review and experimental comparison, Cement Concr. Res., 96, 13-26 (2017) · doi:10.1016/j.cemconres.2017.03.002
[29] Pu, Q.; Jiang, L.; Xu, J.; Chu, H.; Xu, Y.; Zhang, Y., Evolution of pH and chemical composition of pore solution in carbonated concrete, Constr. Build. Mater., 28, 1, 519-24 (2012) · doi:10.1016/j.conbuildmat.2011.09.006
[30] Radu, FA; Muntean, A.; Pop, IS; Suciu, N.; Kolditz, O., A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity, J. Comput. Appl. Math., 1, 246, 74-85 (2013) · Zbl 1426.76295 · doi:10.1016/j.cam.2012.10.017
[31] Reale, R.; Campanella, L.; Sammartino, MP; Visco, G.; Bretti, G.; Ceseri, M.; Natalini, R.; Notarnicola, F., A mathematical, experimental study on iron rings formation in porous stones, J. Cult. Herit., 1, 38, 158-66 (2019) · doi:10.1016/j.culher.2019.01.012
[32] Shriver D. F., Atkins P. W., Cooper H. L.: Inorganic Chemistry. W. H. Freeman: New York. NY. (1990)
[33] Sun, J.: Carbonation kinetics of cementitious materials used in the geological disposal of radioactive waste (Doctoral dissertation, UCL (University College London)), (2011)
[34] Talukdar, S.; Banthia, N.; Grace, JR, Carbonation in concrete infrastructure in the context of global climate change-Part 1: experimental results and model development, Cement Concr. Compos., 34, 8, 924-930 (2012) · doi:10.1016/j.cemconcomp.2012.04.011
[35] Thiery, M.; Villain, G.; Dangla, P.; Platret, G., Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics, Cem. Concr. Res., 37, 7, 1047-58 (2007) · doi:10.1016/j.cemconres.2007.04.002
[36] Torgal, F. Pacheco; Miraldo, S.; Labrincha, JA; De Brito, J., An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC, Constr. Build. Mater., 36, 141-150 (2012) · doi:10.1016/j.conbuildmat.2012.04.066
[37] Villain, G.; Thiery, M., Gammadensimetry: a method to determine drying and carbonation profiles in concrete, Ndt & E Int., 39, 4, 328-37 (2006) · doi:10.1016/j.ndteint.2005.10.002
[38] Villain, G.; Thiery, M.; Platret, G., Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry, Cem. Concr. Res., 37, 8, 1182-92 (2007) · doi:10.1016/j.cemconres.2007.04.015
[39] Zeebe, RE, On the molecular diffusion coefficients of dissolved CO2, HCO3-, and CO32-and their dependence on isotopic mass, Geochim. Cosmochim. Acta, 75, 9, 2483-98 (2011) · doi:10.1016/j.gca.2011.02.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.