×

A comparative study of integral and coupled approaches for modeling hydraulic exchange processes across a rippled streambed. (English) Zbl 1508.76015

Summary: Although both are crucial parts of the hydrological cycle, groundwater and surface water had traditionally been addressed separately. In recent decades, considering them as a single hydrological continuum in light of their continuous interaction has become well established in the scientific community through the development of numerous measurement and experimental techniques. Nevertheless, numerical models, as necessary tools to study a wide range of scenarios and future event predictions, are still based on outdated concepts that consider groundwater and surface water separately. This study compares these “coupled models”, which result from the successive execution of a surface water model and a groundwater model, to a recently developed “integral model”. The integral model uses a single set of equations to model both groundwater and surface water simultaneously, and can account for the continuous interaction at their interface. For comparison, we investigated small-scale flow across a rippled porous streambed. Although we applied identical model domain details and flow conditions, which resulted in very similar water tables and pressure distributions, comparing the integral and coupled models yielded very dissimilar velocity values across the groundwater-surface water interface. These differences highlight the impact of continuous exchange across the interface in the integral model, which imitates such flow processes more realistically than the coupled model. A few decimeters away from the interface, modeled velocity fields are very similar. Since the integral model and the surface water component of the coupled model are both CFD-based (computational fluid dynamics), they require very similar computational resources, namely access to cluster computers. Unfortunately, replacing the surface water component of the coupled model with the widely used shallow water equations model, which indeed would reduce the computational resources required, produces inaccuracy.

MSC:

76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76D05 Navier-Stokes equations for incompressible viscous fluids
76S05 Flows in porous media; filtration; seepage
76M99 Basic methods in fluid mechanics
76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
86A05 Hydrology, hydrography, oceanography

Software:

OpenFOAM

References:

[1] Bardini, L.; Boano, F.; Cardenas, MB; Revelli, R.; Ridolfi, L., Nutrient cycling in bedform induced hyporheic zones, Geochim. Cosmochim. Acta, 84, 47-61 (2012) · doi:10.1016/j.gca.2012.01.025
[2] Bartram, J., Balance, R.: United Nations, and World Health Organization, eds. Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. 1st ed. London; New York: E & FN Spon Chapter 12. ISBN: 0419217304 (1996)
[3] Bayon, A.; Valero, D.; García-Bartual, R.; Vallés-Morán, FJ; López-Jiménez, PA, Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump, Environ. Model. Softw., 80, 322-335 (2016) · doi:10.1016/j.envsoft.2016.02.018
[4] Blois, G.; Best, JL; Sambrook Smith, GH; Hardy, RJ, Effect of bed permeability and hyporheic flow on turbulent flow over bed forms, Geophys. Res. Lett., 41, 18, 6435-6442 (2014) · doi:10.1002/2014gl060906
[5] Boano, F.; Camporeale, C.; Revelli, R.; Ridolfi, L., Sinuosity-driven hyporheic exchange in meandering rivers, Geophys. Res. Lett. (2006) · doi:10.1029/2006GL027630
[6] Boano, F.; Camporeale, C.; Revelli, R., A linear model for the coupled surface-subsurface flow in a meandering stream, Water Resour. Res., 46, W07535 (2010) · doi:10.1029/2009WR008317
[7] Bobba, AG, Ground Water-Surface Water Interface (GWSWI) modeling: recent advances and future challenges, Water Resour. Manag. 26 Nr., 14, 4105-4131 (2012) · doi:10.1007/s11269-012-0134-x
[8] Bottacin-Busolin, A.; Marion, A., Combined role of advective pumping and mechanical dispersion on time scales of bed form—Induced hyporheic exchange, Water Resour. Res., 46, W08518 (2010) · doi:10.1029/2009WR008892
[9] Broecker, T.; Sobhi Gollo, V.; Fox, A.; Lewandowski, J.; Nützmann, G.; Arnon, S.; Hinkelmann, R., High-resolution integrated transport model for studying surface water-groundwater interaction, Groundwater, 59, 4, 488-502 (2021) · doi:10.1111/gwat.13071
[10] Brunke, M., Wechselwirkungen zwischen Fließgewässer und Grundwasser: Bedeutung für aquatische Biodiversität, Stoffhaushalt und Lebensraumstrukturen, Wasserwirtschaft, 90, 32-37 (2001)
[11] Brunke, M.; Gonser, T., The ecological significance of exchange processes between rivers and groundwater, Freshw. Biol., 37, 1, 1-33 (1997) · doi:10.1046/j.1365-2427.1997.00143.x
[12] Cardenas, MB; Wilson, JL, Dunes, turbulent eddies, and interfacial exchange with permeable sediments, Water Resour. Res., 43, 8, W08412 (2007) · doi:10.1029/2006wr005787
[13] Cardenas, MB; Wilson, JL, Effects of current-bed form induced fluid flow on thermal regime of sediments, Water Resour. Res., 43, W08431 (2007) · doi:10.1029/2006WR005343
[14] Chapman, SW; Parker, BL; Cherry, JA; Aravena, R.; Hunkeler, D., Groundwater-surface water interaction and its role on TCE groundwater plume attenuation, J. Contam. Hydrol., 91, 3-4, 203-232 (2007) · doi:10.1016/j.jconhyd.2006.10.006
[15] Chen, X.; Cardenas, MB; Chen, L., Hyporheic exchange driven by three-dimensional sandy bed forms: sensitivity to and prediction from bed form geometry, Water Resour. Res., 54, 6, 4131-4149 (2018) · doi:10.1029/2018wr022663
[16] Coluccio, K.; Morgan, LK, A review of methods for measuring groundwater-surface water exchange in braided rivers, Hydrol. Earth Syst. Sci., 23, 10, 4397-4417 (2019) · doi:10.5194/hess-23-4397-2019
[17] Conant, B.; Cherry, J.; Gillham, R., A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions, J. Contam. Hydrol., 73, 1-4, 249-279 (2004) · doi:10.1016/j.jconhyd.2004.04.001
[18] DIN 4220:2008-11. Pedologic site assessment—designation, classification and deduction of soil parameters (Normative and Nominal Scaling). doi:10.31030/1436635 (2008)
[19] Edwards, R. T. The Hyporheic zone. In R. J. Naiman, & R. E. Bilby (Eds.), River ecology and management: Lessons from the Pacific coastal ecoregion, (pp. 399-429). New York: Springer. doi:10.1007/978‐1‐4612‐1652‐0_16 (1998).
[20] Fleckenstein, JH; Krause, S.; Hannah, DM; Boano, F., Groundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics, Adv. Water Resour. Res., 33, 1291-1295 (2010) · doi:10.1016/j.advwatres.2010.09.011
[21] Fox, A.; Boano, F.; Arnon, S., Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms, Water Resour. Res., 50, 1895-1907 (2014) · doi:10.1002/2013WR014668
[22] Fox, A.; Laube, G.; Schmidt, C.; Fleckenstein, JH; Arnon, S., The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds: hyporheic exchange in heterogenous streambeds, Water Resour. Res., 52, 9, 7460-7477 (2016) · doi:10.1002/2016WR018677
[23] Fraser, BG; Williams, DD, Seasonal boundary dynamics of a groundwater/surface water ecotone, Ecology, 79, 6, 2019-2031 (1998) · doi:10.2307/176706
[24] Gent, M.: Wave interaction with permeable coastal structures, Elsevier Science: Amsterdam, The Netherlands, Vol. 95. ISBN:90-407-1182-8 (1995).
[25] Gomez, JD; Wilson, JL; Cardenas, MB, Residence time distributions in sinuosity-driven hyporheic zones and their biogeochemical effects, Water Resour. Res., 48, W09533 (2012) · doi:10.1029/2012WR012180
[26] Guo, J.; Blankenburg, R.; Geng, X.; Graeber, P-W, Hydrological process analysis in earth dams using the PCSiWaPro^® as a basis for stability analysis, J. Geol. Resour. Eng. (2017) · doi:10.17265/2328-2193/2017.03.004
[27] Harvey, JW; Bencala, KE, The effect of streambed topography on surface-subsurface water exchange in mountain catchments, Water Resour. Res., 29, 1, 89-98 (1993) · doi:10.1029/92WR01960
[28] Harvey, JW; Böhlke, JK; Voytek, MA; Scott, D.; Tobias, CR, Hyporheic zone denitrification: controls on effective reaction depth and contribution to whole stream mass balance, Water Resour. Res., 49, 6298-6316 (2013) · doi:10.1002/wrcr.20492
[29] Hayashi, M.; Rosenberry, DO, Effects of ground water exchange on the hydrology and ecology of surface water, Ground Water, 40, 3, 309-316 (2002) · doi:10.1111/j.1745-6584.2002.tb02659.x
[30] Higuera, P.; Lara, JL; Losada, IJ, Three-dimensional interaction of waves and porous coastal structures using OpenFOAM^®. Part II: Application, Coastal Eng., 83, 259-270 (2014) · doi:10.1016/j.coastaleng.2013.08.010
[31] Hill, AR; LaBadia, CF; Sanmugadas, K., Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream, Biogeochemistry, 42, 285-310 (1998) · doi:10.1023/A:1005932528748
[32] Janssen, F., Cardenas M. B., Sawyer A. H., Dammrich T., J. Krietsch de Beer DA. Comparative experimental and multiphysics computational fluid dynamics study of coupled surface-subsurface flow in bed forms. Water Resour. Res., 48 (2012). doi:10.1029/2012WR011982
[33] Jin, G.; Tang, H.; Gibbes, B.; Li, L.; Barry, D., Transport of nonsorbing solutes in a streambed with periodic bedforms, Adv. Water Resour., 33, 1402-1416 (2010) · doi:10.1016/j.advwatres.2010.09.003
[34] Jones, JB; Holmes, RM, Surface-subsurface interactions in stream ecosystems, Trends Ecol. Evol., 11, 239-242 (1996) · doi:10.1016/0169-5347(96)10013-6
[35] Jones, JP; Sudicky, EA; McLaren, RG, Application of a fully-integrated surface-subsurface flow model at the watershed-scale: a case study, Water Resour. Res. (2008) · doi:10.1029/2006WR005603
[36] Kalbus, E.; Reinstorf, F.; Schirmer, M., Measuring methods for groundwater and surface water interactions, Hydrol. Earth Syst. Sci., 10, 6, 873-887 (2006) · doi:10.5194/hess-10-873-2006
[37] Kalbus, E.; Schmidt, C.; Bayer-Raich, M.; Leschik, S.; Reinstorf, F.; Balcke, G.; Schirmer, M., New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures, Environ. Pollut., 148, 3, 808-816 (2007) · doi:10.1016/j.envpol.2007.01.042
[38] Kollet, SJ; Maxwell, RM, Integrated surface-groundwater flow modeling: a freesurface overland flow boundary condition in a parallel groundwater flow model, Adv. Water Resour. Manag., 29, 945-958 (2006) · doi:10.1016/j.advwatres.2005.08.006
[39] Larkin, RG; Sharp, JM, On the relationship between river basin geomorphology, aquifer hydraulics, and groundwater flow direction in alluvial aquifers, Geol. Soc. Am. Bull., 104, 1608-1620 (1992) · doi:10.1130/0016-7606(1992)104<1608:OTRBRB>2.3.CO;2
[40] Lewandowski, J.; Meinikmann, K.; Krause, S., Groundwater-surface water interactions: recent advances and interdisciplinary challenges, Water, 12, 1, 296 (2020) · doi:10.3390/w12010296
[41] Li, T.; Troch, P.; Rouck, JD, Wave overtopping over a sea dike, J. Comput. Phys., 198, 686-726 (2004) · Zbl 1116.76327 · doi:10.1016/j.jcp.2004.01.022
[42] Luckner, L.; Van Genuchten, MTh; Nielsen, DR, A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface, Water Resour. Res., 25, 10, 2187-2193 (1989) · doi:10.1029/WR025i010p02187
[43] Marzadri, A.; Tonina, D.; Bellin, A.; Vignoli, G.; Tubino, M., Effects of bar topography on hyporheic flow in gravel-bed rivers, Water Resour. Res., 46, W07531 (2010) · doi:10.1029/2009WR008285
[44] Marzadri, A.; Tonina, D.; Bellin, A., A semianalytical three-dimensional process-based model for hyporheic nitrogen dynamics in gravel bed rivers, Water Resour. Res., 47, W11518 (2011) · doi:10.1029/2011WR010583
[45] Mojarrad, BB; Riml, J.; Wörman, A.; Laudon, H., Fragmentation of the hyporheic zone due to regional groundwater circulation, Water Resour. Res. (2019) · doi:10.1029/2018WR024609
[46] Mulholland, PJ; Marzolf, ER; Webster, JR; Hart, DR, Evidence that hyporheic zones increase heterotrophic metabolismand phosphorus uptake in forest streams, Limnol. Oceanogr., 44, 1, 230-231 (1997) · doi:10.4319/lo.1999.44.1.0230
[47] Oxtoby, O., Heyns, J., Suliman R.: A finite-volume solver for two-fluid flow in heterogeneous porous media based on OpenFOAM. In Open Source CFD International Conference. Hamburg, Germany. (2013) doi:10.13140/2.1.3075.8400
[48] Revelli, R.; Boano, F.; Camporeale, C.; Ridolfi, L., Intra-meander hyporheic flow in alluvial rivers, Water Resour. Res., 44, W12428 (2008) · doi:10.1029/2008WR007081
[49] Richards, LA, Capillary conduction of liquids through porous mediums, Physics 1 Nr., 5, 318-333 (1931) · Zbl 0003.28403 · doi:10.1063/1.1745010
[50] Roche, KR; Blois, G.; Best, JL; Christensen, KT; Aubeneau, AF; Packman, AI, Turbulence links momentum and solute exchange in coarse-grained streambeds, Water Resour. Res., 54, 5, 3225-3242 (2018) · doi:10.1029/2017wr021992
[51] Saenger, N.; Kitanidis, PK; Street, R., A numerical study of surface-subsurface exchange processes at a riffle-pool pair in the Lahn River, Germany, Water Resour. Res., 41, 12, 12424 (2005) · doi:10.1029/2004WR003875
[52] Schmitt, P.; Elsaesser, B., On the use of OpenFOAM to model oscillating wave surge converters, Ocean Eng., 108, 98-104 (2015) · doi:10.1016/j.oceaneng.2015.07.055
[53] Schulze, L., Thorenz, C.: The multiphase capabilities of the CFD toolbox Openfoam for hydraulic engineering applications. ICHE 2014, Hamburg. Bundesanstalt für Wasserbau. ISBN 978-3-939230-32-8 (2014)
[54] Simons, F.; Busse, T.; Hou, J.; Özgen, I.; Hinkelmann, R., A model for overland flow and associated processes within the hydroinformatics modelling system, J. Hydroinf. (2014) · doi:10.2166/hydro.2013.173
[55] Sobhi Gollo, V.; Broecker, T.; Lewandowski, J.; Nützmann, G.; Hinkelmann, R., An integral approach to simulate three-dimensional flow in and around a ventilated U-shaped chironomid dwelled burrow, J. Ecohydraulics (2021) · doi:10.1080/24705357.2021.1938258
[56] Sophocleous, M., Interactions between groundwater and surface water: the state of the science, Hydrogeol. J., 10, 1, 52-67 (2002) · doi:10.1007/s10040-001-0170-8
[57] Stanford, JA; Ward, JV, The hyporheic habitat of river ecosystems, Nature, 335, 6185, 64-66 (1988) · doi:10.1038/335064a0
[58] Stonedahl, SH; Harvey, JW; Detty, J.; Aubeneau, A.; Packman, AI, Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model, Water Resour. Res., 48, W10513 (2012) · doi:10.1029/2011WR011582
[59] Storey, RG; Fulthorpe, RR; Williams, DD, Perspectives and predictions on the microbial ecology of the hyporheic zone, Freshw. Biol., 41, 119-130 (1999) · doi:10.1046/j.1365-2427.1999.00377.x
[60] Tonina, D.; Buffington, JM, Hyporheic exchange in gravel bed rivers with pool-riffle morphology: laboratory experiments and three-dimensional modeling, Water Resour. Res., 43, W01421 (2007) · doi:10.1029/2005WR004328
[61] Tonina, D.; Buffington, JM, A three-dimensional model for analyzing the effects of salmon redds on hyporheic exchange and egg pocket habitat, Can. J. Fish. Aquat. Sci., 66, 12, 2157-2173 (2009) · doi:10.1139/F09-146
[62] Toran, L.: Groundwater-surface water interactions: a review for encyclopedia of water. (2017) doi:10.1002/9781119300762.wsts0027
[63] Trauth, N.; Schmidt, C.; Maier, U.; Vieweg, M.; Fleckenstein, J., Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system, Water Resour. Res., 49, 9, 5834-5850 (2013) · doi:10.1002/wrcr.20442
[64] Trauth, N.; Schmidt, C.; Vieweg, M.; Maier, U.; Fleckenstein, JH, Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions, J. Geophys. Res. Biogeosci., 119, 5, 1-5 (2014) · doi:10.1002/2013jg002586
[65] Trauth, N.; Schmidt, C.; Vieweg, M.; Oswald, SE; Fleckenstein, JH, Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions, Water Resour. Res., 51, 2243-2263 (2015) · doi:10.1002/2014WR015857
[66] Weller, HG; Tabor, G.; Jasak, H.; Fureby, C., A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys., 12, 620 (1998) · doi:10.1063/1.168744
[67] Winter, T.C., Harvey, J.W., Franke, O.L., Alley, W.M.: Ground water and surface water; a single resource (1139). Retrieved from doi:10.3133/cir1139 (1998)
[68] Woessner, WW, Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought, Groundwater, 38, 3, 423-429 (2000) · doi:10.1111/j.1745-6584.2000.tb00228.x
[69] Zarnetske, JP; Haggerty, R.; Wondzell, SM; Baker, MA, Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone, J. Geophys. Res., 116, G01025 (2011) · doi:10.1029/2010JG001356
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.