×

The geophysical KdV equation: its solitons, complexiton, and conservation laws. (English) Zbl 1492.35266

Summary: The main goal of the current paper is to analyze the impact of the Coriolis parameter on nonlinear waves by studying the geophysical KdV equation. More precisely, specific transformations are first adopted to derive one-dimensional and operator forms of the governing model. Solitons and complexiton of the geophysical KdV equation are then retrieved with the help of several well-established approaches such as the Kudryashov and Hirota methods. In the end, the new conservation theorem given by Ibragimov is formally employed to extract conservation laws of the governing model. It is shown that by increasing the Coriolis parameter, based on the selected parameter regimes, less time is needed for tending the free surface elevation to zero.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
74J30 Nonlinear waves in solid mechanics
Full Text: DOI

References:

[1] Ak, T.; Saha, A.; Dhawan, S.; Kara, AH, Investigation of Coriolis effect on oceanic flows and its bifurcation via geophysical Korteweg-de Vries equation, Numer. Methods Partial Differ. Equ., 36, 1234-1253 (2020) · Zbl 07777646 · doi:10.1002/num.22469
[2] Akbulut, A.; Taşcan, F., Application of conservation theorem and modified extended tanh-function method to (1+1)-dimensional nonlinear coupled Klein-Gordon-Zakharov equation, Chaos Solitons Fractals, 104, 33-40 (2017) · Zbl 1380.35045 · doi:10.1016/j.chaos.2017.07.025
[3] Akbulut, A.; Kaplan, M.; Kumar, D.; Taşcan, F., The analysis of conservation laws, symmetries and solitary wave solutions of Burgers-Fisher equation, Int. J. Mod. Phys. B, 35, 2150224 (2021) · Zbl 1490.35017 · doi:10.1142/S0217979221502246
[4] Akbulut, A.; Kaplan, M.; Kaabar, MKA, New conservation laws and exact solutions of the special case of the fifth-order KdV equation, J. Ocean Eng. Sci. (2021) · doi:10.1016/j.joes.2021.09.010
[5] Akbulut, A.; Hashemi, MS; Rezazadeh, H., New conservation laws and exact solutions of coupled Burgers’ equation, Waves Random Complex Media (2021) · doi:10.1080/17455030.2021.1979691c
[6] Alharbi, AR; Almatrafi, MB, Exact solitary wave and numerical solutions for geophysical KdV equation, J. King Saud Univ. Sci. (2022) · doi:10.1016/j.jksus.2022.102087
[7] Bluman, GW; Kumei, S., Symmetries and Differential Equations (1989), New York: Springer, New York · Zbl 0698.35001 · doi:10.1007/978-1-4757-4307-4
[8] Ege, SM; Misirli, E., The modified Kudryashov method for solving some fractional-order nonlinear equations, Adv. Differ. Equ., 2014, 135 (2014) · Zbl 1343.35242 · doi:10.1186/1687-1847-2014-135
[9] Geyer, A.; Quirchmayr, R., Shallow water equations for equatorial tsunami waves, Philos. Trans. R. Soc. A, 376, 20170100 (2017) · Zbl 1404.86017 · doi:10.1098/rsta.2017.0100
[10] Hashemi, MS; Baleanu, D., Lie Symmetry Analysis of Fractional Differential Equations (2020), Boca Raton: CRC Press, Boca Raton · Zbl 1436.35001 · doi:10.1201/9781003008552
[11] Hashemi, MS; Abbasbrandy, S.; Alhuthali, MS; Alsulami, HH, Conservation laws and symmetries of mKdV-KP equation, Rom. J. Phys., 60, 904-917 (2015)
[12] Hosseini, K.; Bekir, A.; Kaplan, M., New exact traveling wave solutions of the Tzitzéica-type evolution equations arising in non-linear optics, J. Mod. Opt., 64, 1688-1692 (2017) · doi:10.1080/09500340.2017.1302607
[13] Hosseini, K.; Bekir, A.; Ansari, R., New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method, Optik, 132, 203-209 (2017) · doi:10.1016/j.ijleo.2016.12.032
[14] Hosseini, K.; Samadani, F.; Kumar, D.; Faridi, M., New optical solitons of cubic-quartic nonlinear Schrödinger equation, Optik, 157, 1101-1105 (2018) · doi:10.1016/j.ijleo.2017.11.124
[15] Hosseini, K.; Mirzazadeh, M.; Aligoli, M.; Eslami, M.; Liu, JG, Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation, Math. Model. Nat. Phenom., 15, 61 (2020) · Zbl 1469.37049 · doi:10.1051/mmnp/2020018
[16] Hosseini, K.; Korkmaz, A.; Bekir, A.; Samadani, F.; Zabihi, A.; Topsakal, M., New wave form solutions of nonlinear conformable time-fractional Zoomeron equation in (2+1)-dimensions, Waves Random Complex Media, 31, 228-238 (2021) · Zbl 1520.35137 · doi:10.1080/17455030.2019.1579393
[17] Hosseini, K.; Mirzazadeh, M.; Salahshour, S.; Baleanu, D.; Zafar, A., Specific wave structures of a fifth-order nonlinear water wave equation, J. Ocean Eng. Sci. (2021) · doi:10.1016/j.joes.2021.09.019
[18] Hosseini, K.; Akbulut, A.; Baleanu, D.; Salahshour, S.; Mirzazadeh, M.; Dehingia, K., The Korteweg-de Vries-Caudrey-Dodd-Gibbon dynamical model: its conservation laws, solitons, and complexiton, J. Ocean Eng. Sci. (2022) · doi:10.1016/j.joes.2022.06.003
[19] https://en.wikipedia.org/wiki/Conservation_law
[20] Ibragimov, NH, A new conservation theorem, J. Math. Anal. Appl., 333, 311-328 (2007) · Zbl 1160.35008 · doi:10.1016/j.jmaa.2006.10.078
[21] Ibragimov, NH; Kolsrud, T., Lagrangian approach to evolution equations: symmetries and conservation laws, Nonlinear Dyn., 36, 29-40 (2004) · Zbl 1106.70012 · doi:10.1023/B:NODY.0000034644.82259.1f
[22] Ibragimov, NH; Torrisi, M.; Tracina, R., Self-adjointness and conservation laws of a generalized Burgers equation, J. Phys. Math. Theor., 44, 145201 (2011) · Zbl 1216.35115 · doi:10.1088/1751-8113/44/14/145201
[23] Karunakar, P.; Chakraverty, S., Effect of Coriolis constant on geophysical Korteweg-de Vries equation, J. Ocean Eng. Sci., 4, 113-121 (2019) · doi:10.1016/j.joes.2019.02.002
[24] Kudryashov, NA, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 2248-2253 (2012) · Zbl 1250.35055 · doi:10.1016/j.cnsns.2011.10.016
[25] Kumar, S.; Gupta, RK; Kumari, P., A new Painlevé integrable Broer-Kaup system: symmetry analysis, analytic solutions and conservation laws, Int. J. Numer. Methods Heat Fluid Flow (2021) · doi:10.1108/HFF-02-2021-0094
[26] Manafian Heris, J.; Bagheri, M., Exact solutions for the modified KdV and the generalized KdV equations via exp-function method, J. Math. Ext., 4, 77-98 (2010) · Zbl 1233.35173
[27] Naz, R.; Mahomed, FM; Mason, DP, Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl. Math. Comput., 205, 212-230 (2008) · Zbl 1153.76051
[28] Olver, PJ, Application of Lie Groups to Differential Equations (1993), New York: Springer, New York · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[29] Rizvi, STR; Seadawy, AR; Ashraf, F.; Younis, M.; Iqbal, H.; Baleanu, D., Lump and interaction solutions of a geophysical Korteweg-de Vries equation, Results Phys., 19, 103661 (2020) · doi:10.1016/j.rinp.2020.103661
[30] Rizvi, STR; Seadawy, AR; Younis, M.; Ali, I.; Althobaiti, S.; Mahmoud, SF, Soliton solutions, Painleve analysis and conservation laws for a nonlinear evolution equation, Results Phys., 23, 103999 (2021) · doi:10.1016/j.rinp.2021.103999
[31] Saha, A.; Banerjee, S., Dynamical Systems and Nonlinear Waves in Plasmas (2021), Boca Raton: CRC Press, Boca Raton · Zbl 1471.76001 · doi:10.1201/9781003042549
[32] Wang, G., A new (3+1)-dimensional Schrödinger equation: derivation, soliton solutions and conservation laws, Nonlinear Dyn., 104, 1595-1602 (2021) · doi:10.1007/s11071-021-06359-6
[33] Wang, G., A novel (3+1)-dimensional sine-Gorden and a sinh-Gorden equation: derivation, symmetries and conservation laws, Appl. Math. Lett., 113, 106768 (2021) · Zbl 1458.35020 · doi:10.1016/j.aml.2020.106768
[34] Wang, G., Symmetry analysis, analytical solutions and conservation laws of a generalized KdV-Burgers-Kuramoto equation and its fractional version, Fractals, 29, 2150101 (2021) · Zbl 1482.35027 · doi:10.1142/S0218348X21501012
[35] Wang, G.; Kara, AH, Conservation laws, multipliers, adjoint equations and Lagrangians for Jaulent-Miodek and some families of systems of KdV type equations, Nonlinear Dyn., 81, 753-763 (2015) · Zbl 1347.37118 · doi:10.1007/s11071-015-2025-1
[36] Wang, G.; Wazwaz, AM, A new (3+1)-dimensional KdV equation and mKdV equation with their corresponding fractional forms, Fractals, 30, 2250081 (2022) · Zbl 1504.35456 · doi:10.1142/S0218348X22500815
[37] Wang, G.; Li, L.; Wang, Q.; Geng, J., New explicit solutions of the extended double (2+1)-dimensional sine-Gorden equation and its time fractional form, Fractal Fract., 6, 166 (2022) · doi:10.3390/fractalfract6030166
[38] Wazwaz, AM, The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations, Appl. Math. Comput., 169, 321-338 (2005) · Zbl 1121.65359
[39] Wazwaz, AM, Partial Differential Equations and Solitary Waves Theory (2009), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1175.35001 · doi:10.1007/978-3-642-00251-9
[40] Yaşar, E., Variational principles and conservation laws to the Burridge-Knopoff equation, Nonlinear Dyn., 54, 307-312 (2008) · Zbl 1173.35667 · doi:10.1007/s11071-008-9330-x
[41] Yaşar, E., On the conservation laws and invariant solutions of the mKdV equation, J. Math. Anal. Appl., 363, 174-181 (2010) · Zbl 1180.35471 · doi:10.1016/j.jmaa.2009.08.030
[42] Zhou, Y.; Ma, WX, Complexiton solutions to soliton equations by the Hirota method, J. Math. Phys., 58, 101511 (2017) · Zbl 1382.37073 · doi:10.1063/1.4996358
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.