×

Learning landmark geodesics using the ensemble Kalman filter. (English) Zbl 1478.68281

Summary: We study the problem of diffeomorphometric geodesic landmark matching where the objective is to find a diffeomorphism that, via its group action, maps between two sets of landmarks. It is well-known that the motion of the landmarks, and thereby the diffeomorphism, can be encoded by an initial momentum leading to a formulation where the landmark matching problem can be solved as an optimisation problem over such momenta. The novelty of our work lies in the application of a derivative-free Bayesian inverse method for learning the optimal momentum encoding the diffeomorphic mapping between the template and the target. The method we apply is the ensemble Kalman filter, an extension of the Kalman filter to nonlinear operators. We describe an efficient implementation of the algorithm and show several numerical results for various target shapes.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
58D05 Groups of diffeomorphisms and homeomorphisms as manifolds
58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable)
62F15 Bayesian inference
65C05 Monte Carlo methods
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
65K10 Numerical optimization and variational techniques
68T10 Pattern recognition, speech recognition

Software:

KeOps; PyTorch

References:

[1] M. F. Beg; M. I. Miller; A. Trouvé; L. Younes, Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vis., 61, 139-157 (2005) · Zbl 1477.68459 · doi:10.1023/B:VISI.0000043755.93987.aa
[2] N. K. Chada, M. A. Iglesias, L. Roininen and A. M. Stuart, Parameterizations for ensemble Kalman inversion, Inverse Problems, 34 (2018), 31pp. · Zbl 1515.62041
[3] B. Charlier, J. Feydy, J. A. Glaunès, F.-D. Collin and G. Durif, Kernel operations on the GPU, with autodiff, without memory overflows, preprint, arXiv: 2004.11127.
[4] C. J. Cotter, S. L. Cotter and F.-X. Vialard, Bayesian data assimilation in shape registration, Inverse Problems, 29 (2013), 21pp. · Zbl 1273.65013
[5] S. L. Cotter; M. Dashti; A. M. Stuart, Approximation of Bayesian inverse problems for PDEs, SIAM J. Numer. Anal., 48, 322-345 (2010) · Zbl 1210.35284 · doi:10.1137/090770734
[6] P. Dupuis; U. Grenander; M. I. Miller, Variational problems on flows of diffeomorphisms for image matching, Quart. Appl. Math., 56, 587-600 (1998) · Zbl 0949.49002 · doi:10.1090/qam/1632326
[7] G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res.-Oceans, 99, 10143-10162 (1994) · doi:10.1029/94JC00572
[8] U. Grenander; M. I. Miller, Computational anatomy: An emerging discipline, Quart. Appl. Math., 56, 617-694 (1998) · Zbl 0952.92016 · doi:10.1090/qam/1668732
[9] U. Grenander; M. I. Miller, Representations of knowledge in complex systems, J. Roy. Statist. Soc. Ser. B, 56, 549-603 (1994) · Zbl 0814.62009 · doi:10.1111/j.2517-6161.1994.tb02000.x
[10] S. J. Greybush; E. Kalnay; T. Miyoshi; K. Ide; B. R. Hunt, Balance and ensemble Kalman filter localization techniques, Monthly Weather Review, 139, 511-522 (2011) · doi:10.1175/2010MWR3328.1
[11] D. D. Holm; A. Trouvé; L. Younes, The Euler-Poincaré theory of metamorphosis, Quart. Appl. Math., 67, 661-685 (2009) · Zbl 1186.68413 · doi:10.1090/S0033-569X-09-01134-2
[12] M. A. Iglesias, A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems, Inverse Problems, 32 (2016), 45pp. · Zbl 1334.65110
[13] M. A. Iglesias, K. J. H. Law and A. M. Stuart, Ensemble Kalman methods for inverse problems, Inverse Problems, 29 (2013), 20pp. · Zbl 1311.65064
[14] S. C. Joshi; M. I. Miller, Landmark matching via large deformation diffeomorphisms, IEEE Trans. Image Process., 9, 1357-1370 (2000) · Zbl 0965.37065 · doi:10.1109/83.855431
[15] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160, Springer-Verlag, New York, 2005. · Zbl 1068.65022
[16] R. E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME Ser. D. J. Basic Engrg., 82, 35-45 (1960) · doi:10.1115/1.3662552
[17] L. Kühnel; S. Sommer; A. Arnaudon, Differential geometry and stochastic dynamics with deep learning numerics, Appl. Math. Comput., 356, 411-437 (2019) · Zbl 1428.58026 · doi:10.1016/j.amc.2019.03.044
[18] F. Le Gland, V. Monbet and V.-D. Tran, Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford Univ. Press, Oxford, 2011, 598-631. · Zbl 1225.93108
[19] J. Ma; M. I. Miller; A. Trouvé; L. Younes, Bayesian template estimation in computational anatomy, NeuroImage, 42, 252-261 (2008) · doi:10.1016/j.neuroimage.2008.03.056
[20] J. Mandel; L. Cobb; J. D. Beezley, On the convergence of the ensemble Kalman filter, Appl. Math., 56, 533-541 (2011) · Zbl 1248.62164 · doi:10.1007/s10492-011-0031-2
[21] M. I. Miller; A. Trouvé; L. Younes, Geodesic shooting for computational anatomy, J. Math. Imaging Vision, 24, 209-228 (2006) · Zbl 1478.92084 · doi:10.1007/s10851-005-3624-0
[22] D. Mumford, Pattern theory: The mathematics of perception, in Proceedings of the International Congress of Mathematicians, Vol. I, Higher Ed. Press, Beijing, 2002,401-422. · Zbl 1057.91072
[23] A. Paszke, S. Gross, F. Massa, A. Lerer and J. Bradbury, et al., PyTorch: An imperative style, high-performance deep learning library, preprint, arXiv: 1912.01703
[24] Y. Saad; M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7, 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[25] C. Schillings; A. M. Stuart, Analysis of the ensemble Kalman filter for inverse problems, SIAM J. Numer. Anal., 55, 1264-1290 (2017) · Zbl 1366.65101 · doi:10.1137/16M105959X
[26] T. Schneider; S. Lan; A. Stuart; J. Teixeira, Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations, Geophysical Research Letters, 44, 12396-12417 (2017) · doi:10.1002/2017GL076101
[27] A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19, 451-559 (2010) · Zbl 1242.65142 · doi:10.1017/S0962492910000061
[28] A. Trouvé, Diffeomorphisms groups and pattern matching in image analysis, Int. J. Comput. Vis., 28, 213-221 (1998) · doi:10.1023/A:1008001603737
[29] A. Trouvé, An infinite dimensional group approach for physics based models in pattern recognition, (1995). · Zbl 0855.57035
[30] A. Trouvé; L. Younes, Metamorphoses through Lie group action, Found. Comput. Math., 5, 173-198 (2005) · Zbl 1099.68116 · doi:10.1007/s10208-004-0128-z
[31] R. Van Der Merwe, A. Doucet, N. De Freitas and E. A. Wan, The unscented particle filter, in Advances in Neural Information Processing Systems, 2000,584-590.
[32] C. R. Vogel, Computational Methods for Inverse Problems, Frontiers in Applied Mathematics, 23, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. · Zbl 1008.65103
[33] L. Younes, Shapes and Diffeomorphisms, Applied Mathematical Sciences, 171, Springer-Verlag, Berlin, 2010 · Zbl 1205.68355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.