×

Dark matter influence on black objects thermodynamics. (English) Zbl 1536.83074

Summary: Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.

MSC:

83C57 Black holes
83C56 Dark matter and dark energy
83C50 Electromagnetic fields in general relativity and gravitational theory

References:

[1] R.M. Wald, 1994 Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press, Chicago U.S.A., · Zbl 0842.53052
[2] J.M. Bardeen, B. Carter and S.W. Hawking, 1973 The four laws of black hole mechanics, https://doi.org/10.1007/BF01645742 Commun. Math. Phys.31 161 · Zbl 1125.83309 · doi:10.1007/BF01645742
[3] D. Sudarsky and R.M. Wald, 1992 Extrema of mass, stationarity and staticity and solutions to the Einstein Yang-Mills equations, https://doi.org/10.1103/PhysRevD.46.1453 Phys. Rev. D 46 1453 · doi:10.1103/PhysRevD.46.1453
[4] R.M. Wald, 1993 Black hole entropy is the Noether charge, https://doi.org/10.1103/PhysRevD.48.R3427 Phys. Rev. D 48 R3427 [gr-qc/9307038] · Zbl 0942.83512 · doi:10.1103/PhysRevD.48.R3427
[5] V. Iyer and R.M. Wald, 1994 Some properties of Noether charge and a proposal for dynamical black hole entropy, https://doi.org/10.1103/PhysRevD.50.846 Phys. Rev. D 50 846 [gr-qc/9403028] · doi:10.1103/PhysRevD.50.846
[6] V. Iyer and R.M. Wald, 1995 A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, https://doi.org/10.1103/PhysRevD.52.4430 Phys. Rev. D 52 4430 [gr-qc/9503052] · doi:10.1103/PhysRevD.52.4430
[7] V. Iyer, 1997 Lagrangian perfect fluids and black hole mechanics, https://doi.org/10.1103/PhysRevD.55.3411 Phys. Rev. D 55 3411 [gr-qc/9610025] · doi:10.1103/PhysRevD.55.3411
[8] T. Jacobson, G. Kang and R.C. Myers, 1994 On black hole entropy, https://doi.org/10.1103/PhysRevD.49.6587 Phys. Rev. D 49 6587 [gr-qc/9312023] · doi:10.1103/PhysRevD.49.6587
[9] T. Jacobson, G. Kang and R.C. Myers, 1995 Increase of black hole entropy in higher curvature gravity, https://doi.org/10.1103/PhysRevD.52.3518 Phys. Rev. D 52 3518 [gr-qc/9503020] · doi:10.1103/PhysRevD.52.3518
[10] J.-I. Koga and K.-I. Maeda, 1998 Equivalence of black hole thermodynamics between a generalized theory of gravity and the Einstein theory, https://doi.org/10.1103/PhysRevD.58.064020 Phys. Rev. D 58 064020 [gr-qc/9803086] · doi:10.1103/PhysRevD.58.064020
[11] S. Gao, 2003 The first law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories, https://doi.org/10.1103/PhysRevD.68.044016 Phys. Rev. D 68 044016 [gr-qc/0304094] · Zbl 1244.83018 · doi:10.1103/PhysRevD.68.044016
[12] P.K. Townsend and M. Zamaklar, 2001 The first law of black brane mechanics, https://doi.org/10.1088/0264-9381/18/23/320 Class. Quant. Grav.18 5269 [hep-th/0107228] · Zbl 0993.83046 · doi:10.1088/0264-9381/18/23/320
[13] M. Rogatko, 2005 Staticity theorem for higher dimensional generalized Einstein-Maxwell system, https://doi.org/10.1103/PhysRevD.71.024031 Phys. Rev. D 71 024031 [hep-th/0501216] · doi:10.1103/PhysRevD.71.024031
[14] S. Gao and R.M. Wald, 2001 The “physical process” version of the first law and the generalized second law for charged and rotating black holes, https://doi.org/10.1103/PhysRevD.64.084020 Phys. Rev. D 64 084020 [gr-qc/0106071] · doi:10.1103/PhysRevD.64.084020
[15] G. Barnich, 2003 Boundary charges in gauge theories: using Stokes theorem in the bulk, https://doi.org/10.1088/0264-9381/20/16/310 Class. Quant. Grav.20 3685 [hep-th/0301039] · Zbl 1045.83013 · doi:10.1088/0264-9381/20/16/310
[16] G. Barnich and G. Compere, 2008 Surface charge algebra in gauge theories and thermodynamic integrability, https://doi.org/10.1063/1.2889721 J. Math. Phys.49042901 [0708.2378] · Zbl 1152.81327 · doi:10.1063/1.2889721
[17] M. Rogatko, 2002 Physical process version of the first law of thermodynamics for black holes in Einstein-Maxwell axion dilaton gravity, https://doi.org/10.1088/0264-9381/19/14/320 Class. Quant. Grav.19 3821 [hep-th/0207147] · Zbl 1002.83048 · doi:10.1088/0264-9381/19/14/320
[18] M. Rogatko, 2005 Physical process version of the first law of thermodynamics for black holes in higher dimensional gravity, https://doi.org/10.1103/PhysRevD.71.104004 Phys. Rev. D 71 104004 [hep-th/0505047] · doi:10.1103/PhysRevD.71.104004
[19] K. Copsey and G.T. Horowitz, 2006 The role of dipole charges in black hole thermodynamics, https://doi.org/10.1103/PhysRevD.73.024015 Phys. Rev. D 73 024015 [hep-th/0505278] · doi:10.1103/PhysRevD.73.024015
[20] H. Elvang, R. Emparan and P. Figueras, 2005 Non-supersymmetric black rings as thermally excited supertubes J. High Energy Phys. JHEP02(2005)031 [hep-th/0412130]
[21] M. Rogatko, 2005 Black rings and the physical process version of the first law of thermodynamics, https://doi.org/10.1103/PhysRevD.72.074008 Phys. Rev. D 72 074008 [Erratum ibid D 72 (2005) 089901] [hep-th/0509150] · doi:10.1103/PhysRevD.72.074008
[22] M. Rogatko, 2006 First law of black rings thermodynamics in higher dimensional dilaton gravity with p + 1 strength forms, https://doi.org/10.1103/PhysRevD.73.024022 Phys. Rev. D 73 024022 [hep-th/0601055] · doi:10.1103/PhysRevD.73.024022
[23] M. Rogatko, 2007 First law of black rings thermodynamics in higher dimensional Chern-Simons gravity, https://doi.org/10.1103/PhysRevD.75.024008 Phys. Rev. D 75 024008 [hep-th/0611260] · doi:10.1103/PhysRevD.75.024008
[24] M. Rogatko, 2007 First law of black saturn thermodynamics, https://doi.org/10.1103/PhysRevD.75.124015 Phys. Rev. D 75 124015 [0705.3697] · doi:10.1103/PhysRevD.75.124015
[25] M. Rogatko, 2009 First law of p-brane thermodynamics, https://doi.org/10.1103/PhysRevD.80.044035 Phys. Rev. D 80 044035 [0909.0323] · doi:10.1103/PhysRevD.80.044035
[26] K. Prabhu, 2017 The first law of black hole mechanics for fields with internal gauge freedom, https://doi.org/10.1088/1361-6382/aa536b Class. Quant. Grav.34 035011 [1511.00388] · Zbl 1358.83058 · doi:10.1088/1361-6382/aa536b
[27] K. Dutta, S. Ray and J. Traschen, 2006 Boost mass and the mechanics of accelerated black holes, https://doi.org/10.1088/0264-9381/23/2/005 Class. Quant. Grav.23 335 [hep-th/0508041] · Zbl 1087.83043 · doi:10.1088/0264-9381/23/2/005
[28] M. Appels, R. Gregory and D. Kubiznak, 2016 Thermodynamics of accelerating black holes, https://doi.org/10.1103/PhysRevLett.117.131303 Phys. Rev. Lett.117 131303 [1604.08812] · doi:10.1103/PhysRevLett.117.131303
[29] M. Astorino, 2017 Thermodynamics of regular accelerating black holes, https://doi.org/10.1103/PhysRevD.95.064007 Phys. Rev. D 95 064007 [1612.04387] · doi:10.1103/PhysRevD.95.064007
[30] J.L. Friedman, K. Uryu and M. Shibata, 2002 Thermodynamics of binary black holes and neutron stars, https://doi.org/10.1103/PhysRevD.65.064035 Phys. Rev. D 65 064035 [https://doi.org/10.1103/PhysRevD.70.129904Erratum ibid D 70 (2004) 129904] [gr-qc/0108070] · doi:10.1103/PhysRevD.65.064035
[31] K. Uryu, E. Gourgoulhon and C. Markakis, 2010 Thermodynamics of magnetized binary compact objects, https://doi.org/10.1103/PhysRevD.82.104054 Phys. Rev. D 82 104054 [1010.4409] · doi:10.1103/PhysRevD.82.104054
[32] J.K. Blackburn and S.L. Detweiler, 1992 Close black hole binary systems, https://doi.org/10.1103/PhysRevD.46.2318 Phys. Rev. D 46 2318 · doi:10.1103/PhysRevD.46.2318
[33] S.L. Detweiler, 1994 Periodic solutions of the Einstein equations, https://doi.org/10.1103/PhysRevD.50.4929 Phys. Rev. D 50 4929 [gr-qc/9312016] · doi:10.1103/PhysRevD.50.4929
[34] C. Klein, 2004 Binary black hole spacetimes with a helical Killing vector, https://doi.org/10.1103/PhysRevD.70.124026 Phys. Rev. D 70 124026 [gr-qc/0410095] · doi:10.1103/PhysRevD.70.124026
[35] C.G. Torre, 2006 Uniqueness of solutions to the helically reduced wave equation with Sommerfeld boundary conditions, https://doi.org/10.1063/1.2212667 J. Math. Phys.47 073501 [math-ph/0603073] · Zbl 1112.58030 · doi:10.1063/1.2212667
[36] C.G. Torre, 2003 The helically reduced wave equation as a symmetric positive system, https://doi.org/10.1063/1.1623930 J. Math. Phys.44 6223 [math-ph/0309008] · Zbl 1063.35100 · doi:10.1063/1.1623930
[37] R. Beig, J.M. Heinzle and B.G. Schmidt, 2007 Helically symmetric N-particle solutions in scalar gravity, https://doi.org/10.1103/PhysRevLett.98.121102 Phys. Rev. Lett.98 121102 [gr-qc/0612066] · doi:10.1103/PhysRevLett.98.121102
[38] J. Bicak and B.G. Schmidt, 2007 Helical symmetry in linear systems, https://doi.org/10.1103/PhysRevD.76.104040 Phys. Rev. D 76 104040 [0803.4103] · doi:10.1103/PhysRevD.76.104040
[39] S. Yoshida, B.C. Bromley, J.S. Read, K. Uryu and J.L. Friedman, 2006 Models of helically symmetric binary systems, https://doi.org/10.1088/0264-9381/23/16/S16 Class. Quant. Grav.23 S599 [gr-qc/0605035] · Zbl 1179.85017 · doi:10.1088/0264-9381/23/16/S16
[40] J.T. Whelan, C. Beetle, W. Landry and R.H. Price, 2002 Radiation balanced simulations for binary inspiral, https://doi.org/10.1088/0264-9381/19/7/307 Class. Quant. Grav.19 1285 [gr-qc/0110004] · Zbl 0997.83017 · doi:10.1088/0264-9381/19/7/307
[41] S. Bonazzola, E. Gourgoulhon and J.-A. Marck, 1997 A relativistic formalism to compute quasiequilibrium configurations of nonsynchronized neutron star binaries, https://doi.org/10.1103/PhysRevD.56.7740 Phys. Rev. D 56 7740 [gr-qc/9710031] · doi:10.1103/PhysRevD.56.7740
[42] H. Asada, 1998 Formulation for the internal motion of quasiequilibrium configurations in general relativity, https://doi.org/10.1103/PhysRevD.57.7292 Phys. Rev. D 57 7292 [gr-qc/9804003] · doi:10.1103/PhysRevD.57.7292
[43] J.D. Bekenstein and A. Oron, 2000 Conservation of circulation in magnetohydrodynamics, https://doi.org/10.1103/PhysRevE.62.5594 Phys. Rev. E 62 5594 [astro-ph/0002045] · doi:10.1103/PhysRevE.62.5594
[44] J.D. Bekenstein and A. Oron, 2001 Extended Kelvin theorem in relativistic magnetohydrodynamics, https://doi.org/10.1023/A:1017507917267 Found. Phys.31 895 [gr-qc/0012025] · doi:10.1023/A:1017507917267
[45] M.M. Glenz and K. Uryu, 2007 Circular solution of two unequal mass particles in post-Minkowski approximation, https://doi.org/10.1103/PhysRevD.76.027501 Phys. Rev. D 76 027501 [0704.3769] · doi:10.1103/PhysRevD.76.027501
[46] J.R. Wilson and G.J. Mathews, 1995 Instabilities in close neutron star binaries, https://doi.org/10.1103/PhysRevLett.75.4161 Phys. Rev. Lett.75 4161 . · doi:10.1103/PhysRevLett.75.4161
[47] J.R. Wilson, G.J. Mathews and P. Marronetti, 1996 Relativistic numerical model for close neutron star binaries, https://doi.org/10.1103/PhysRevD.54.1317 Phys. Rev. D 54 1317 [gr-qc/9601017] · doi:10.1103/PhysRevD.54.1317
[48] T.W. Baumgarte, G.B. Cook, M.A. Scheel, S.L. Shapiro and S.A. Teukolsky, 1998 The stability of relativistic neutron stars in binary orbit, https://doi.org/10.1103/PhysRevD.57.6181 Phys. Rev. D 57 6181 [gr-qc/9705023] · doi:10.1103/PhysRevD.57.6181
[49] Virgo and LIGO Scientific collaborations, B.P. Abbott et al., 2016 Observation of gravitational waves from a binary black hole merger, https://doi.org/10.1103/PhysRevLett.116.061102 Phys. Rev. Lett.116 061102 [1602.03837] · doi:10.1103/PhysRevLett.116.061102
[50] Virgo and LIGO Scientific collaborations, B.P. Abbott et al., 2016 GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, https://doi.org/10.1103/PhysRevLett.116.241103 Phys. Rev. Lett.116 241103 [1606.04855] · doi:10.1103/PhysRevLett.116.241103
[51] Virgo and LIGO Scientific collaborations, B.P. Abbott et al., 2017 GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, https://doi.org/10.1103/PhysRevLett.118.221101 Phys. Rev. Lett.118 221101 [1706.01812] · doi:10.1103/PhysRevLett.118.221101
[52] Virgo and LIGO Scientific collaborations, B.P. Abbott et al., 2017 GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, https://doi.org/10.1103/PhysRevLett.119.141101 Phys. Rev. Lett.119 141101 [1709.09660] · doi:10.1103/PhysRevLett.119.141101
[53] Virgo and LIGO Scientific collaborations, B.P. Abbott et al., 2017 GW170608: observation of a 19-solar-mass binary black hole coalescence, https://doi.org/10.3847/2041-8213/aa9f0c Astrophys. J.851 L35 [1711.05578] · doi:10.3847/2041-8213/aa9f0c
[54] Virgo and LIGO Scientific collaborations, B.P. Abbott et al., 2017 GW170817: observation of gravitational waves from a binary neutron star inspiral, https://doi.org/10.1103/PhysRevLett.119.161101 Phys. Rev. Lett.119 161101 [1710.05832] · doi:10.1103/PhysRevLett.119.161101
[55] R. Massey et al., 2007 Dark matter maps reveal cosmic scaffolding, https://doi.org/10.1038/nature05497 Nature445 286 [astro-ph/0701594] · doi:10.1038/nature05497
[56] J.P. Dietrich et al., 2012 A filament of dark matter between two clusters of galaxies, https://doi.org/10.1038/nature11224 Nature487 202 [1207.0809] · doi:10.1038/nature11224
[57] T.K. Starkenburg, A. Helmi and L.V. Sales, 2016 Dark influences II: gas and star formation in minor mergers of dwarf galaxies with dark satellites, https://doi.org/10.1051/0004-6361/201527247 Astron. Astrophys.587 A24 [1508.06281] · doi:10.1051/0004-6361/201527247
[58] M. Regis, J.-Q. Xia, A. Cuoco, E. Branchini, N. Fornengo and M. Viel, 2015 Particle dark matter searches outside the local group, https://doi.org/10.1103/PhysRevLett.114.241301 Phys. Rev. Lett.114 241301 [1503.05922] · doi:10.1103/PhysRevLett.114.241301
[59] Y. Ali-Haïmoud, J. Chluba and M. Kamionkowski, 2015 Constraints on dark matter interactions with Standard Model particles from cosmic microwave background spectral distortions, https://doi.org/10.1103/PhysRevLett.115.071304 Phys. Rev. Lett.115 071304 [1506.04745] · doi:10.1103/PhysRevLett.115.071304
[60] J. Bramante and T. Linden, 2014 Detecting dark matter with imploding pulsars in the galactic center, https://doi.org/10.1103/PhysRevLett.113.191301 Phys. Rev. Lett.113 191301 [1405.1031] · doi:10.1103/PhysRevLett.113.191301
[61] J. Fuller and C. Ott, 2015 Dark matter-induced collapse of neutron stars: a possible link between fast radio bursts and the missing pulsar problem, https://doi.org/10.1093/mnrasl/slv049 Mon. Not. Roy. Astron. Soc.450 L71 [1412.6119] · doi:10.1093/mnrasl/slv049
[62] I. Lopes and J. Silk, 2014 A particle dark matter footprint on the first generation of stars, https://doi.org/10.1088/0004-637X/786/1/25 Astrophys. J.786 25 [1404.3909] · doi:10.1088/0004-637X/786/1/25
[63] A. Nakonieczna, M. Rogatko and R. Moderski, 2012 Dynamical collapse of charged scalar field in phantom gravity, https://doi.org/10.1103/PhysRevD.86.044043 Phys. Rev. D 86 044043 [1209.1203] · doi:10.1103/PhysRevD.86.044043
[64] A. Nakonieczna, M. Rogatko and Å. Nakonieczny, 2015 Dark sector impact on gravitational collapse of an electrically charged scalar field J. High Energy Phys. JHEP11(2015)012 [1508.02657] . · Zbl 1388.83056 · doi:10.1007/JHEP11(2015)012
[65] A. Geringer-Sameth et al., 2015 Indication of gamma-ray emission from the newly discovered dwarf galaxy Reticulum II, https://doi.org/10.1103/PhysRevLett.115.081101 Phys. Rev. Lett.115 081101 [1503.02320] · doi:10.1103/PhysRevLett.115.081101
[66] K.K. Boddy and J. Kumar, 2015 Indirect detection of dark matter using MeV-range gamma-ray telescopes, https://doi.org/10.1103/PhysRevD.92.023533 Phys. Rev. D 92 023533 [1504.04024] · doi:10.1103/PhysRevD.92.023533
[67] K. Van Tilburg, N. Leefer, L. Bougas and D. Budker, 2015 Search for ultralight scalar dark matter with atomic spectroscopy, https://doi.org/10.1103/PhysRevLett.115.011802 Phys. Rev. Lett.115 011802 [1503.06886] · doi:10.1103/PhysRevLett.115.011802
[68] BaBar collaboration, J.P. Lees et al., 2014 Search for a dark photon in \(e^+e^-\) collisions at BaBar, https://doi.org/10.1103/PhysRevLett.113.201801 Phys. Rev. Lett.113 201801 [1406.2980] · doi:10.1103/PhysRevLett.113.201801
[69] J.H. Chang, R. Essig and S.D. McDermott, 2017 Revisiting supernova 1987A constraints on dark photons J. High Energy Phys. JHEP01(2017)107 [1611.03864] · Zbl 1373.85001 · doi:10.1007/JHEP01(2017)107
[70] T. Vachaspati and A. Achucarro, 1991 Semilocal cosmic strings, https://doi.org/10.1103/PhysRevD.44.3067 Phys. Rev. D 44 3067 · doi:10.1103/PhysRevD.44.3067
[71] A. Achucarro and T. Vachaspati, 2000 Semilocal and electroweak strings, https://doi.org/10.1016/S0370-1573(99)00103-9 Phys. Rept.327 347 [hep-ph/9904229] · doi:10.1016/S0370-1573(99)00103-9
[72] S.A. Abel and B.W. Schofield, 2004 Brane anti-brane kinetic mixing, millicharged particles and SUSY breaking, https://doi.org/10.1016/j.nuclphysb.2004.02.037 Nucl. Phys. B 685 150 [hep-th/0311051] · Zbl 1107.81319 · doi:10.1016/j.nuclphysb.2004.02.037
[73] S.A. Abel, J. Jaeckel, V.V. Khoze and A. Ringwald, 2008 Illuminating the hidden sector of string theory by shining light through a magnetic field, https://doi.org/10.1016/j.physletb.2008.03.076 Phys. Lett. B 666 66 [hep-ph/0608248] · doi:10.1016/j.physletb.2008.03.076
[74] S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, 2008 Kinetic mixing of the photon with hidden U(1)s in string phenomenology J. High Energy Phys. JHEP07(2008)124 [0803.1449]
[75] NA64 collaboration, D. Banerjee et al., 2017 Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, https://doi.org/10.1103/PhysRevLett.118.011802 Phys. Rev. Lett.118 011802 [1610.02988] · doi:10.1103/PhysRevLett.118.011802
[76] P. Jean et al., 2003 Early SPI/INTEGRAL measurements of 511 keV line emission from the \(4^{ t }\) h quadrant of the galaxy, https://doi.org/10.1051/0004-6361:20031056 Astron. Astrophys.407 L55 [astro-ph/0309484] · doi:10.1051/0004-6361:20031056
[77] J. Chang et al., 2008 An excess of cosmic ray electrons at energies of 300-800 GeV, https://doi.org/10.1038/nature07477 Nature456 362 · doi:10.1038/nature07477
[78] PAMELA collaboration, O. Adriani et al., 2009 An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, https://doi.org/10.1038/nature07942 Nature458 607 [0810.4995] · doi:10.1038/nature07942
[79] Muon g-2 collaboration, G.W. Bennett et al., 2006 Final report of the muon E821 anomalous magnetic moment measurement at BNL, https://doi.org/10.1103/PhysRevD.73.072003 Phys. Rev. D 73 072003 [hep-ex/0602035] · doi:10.1103/PhysRevD.73.072003
[80] H. Davoudiasl, H.-S. Lee and W.J. Marciano, 2012 “Dark” Z implications for parity violation, rare meson decays and Higgs physics, https://doi.org/10.1103/PhysRevD.85.115019 Phys. Rev. D 85 115019 [1203.2947] · doi:10.1103/PhysRevD.85.115019
[81] H. Davoudiasl, H.-S. Lee, I. Lewis and W.J. Marciano, 2013 Higgs decays as a window into the dark sector, https://doi.org/10.1103/PhysRevD.88.015022 Phys. Rev. D 88 015022 [1304.4935] · doi:10.1103/PhysRevD.88.015022
[82] D. Harvey, R. Massey, T. Kitching, A. Taylor and E. Tittley, 2015 The non-gravitational interactions of dark matter in colliding galaxy clusters, https://doi.org/10.1126/science.1261381 Science347 1462 [1503.07675] . · doi:10.1126/science.1261381
[83] B.S. Acharya, S.A.R. Ellis, G.L. Kane, B.D. Nelson and M.J. Perry, 2016 The lightest visible-sector supersymmetric particle is likely to be unstable, https://doi.org/10.1103/PhysRevLett.117.181802 Phys. Rev. Lett.117 181802 [1604.05320] · doi:10.1103/PhysRevLett.117.181802
[84] N. Fanidakis, A.V. Maccio, C.M. Baugh, C.G. Lacey and C.S. Frenk, 2013 The most luminous quasars do not live in the most massive dark matter haloes at any redshift, https://doi.org/10.1093/mnras/stt1567 Mon. Not. Roy. Astron. Soc.436 315 [1305.2199] · doi:10.1093/mnras/stt1567
[85] N.J. McConnell et al., 2011 Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies, https://doi.org/10.1038/nature10636 Nature480 215 [1112.1078] · doi:10.1038/nature10636
[86] X.B. Wu et al., 2015 An ultra-luminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30, https://doi.org/10.1038/nature14241 Nature518 512 [1502.07418] · doi:10.1038/nature14241
[87] J. Thomas, C.P. Ma, N.J. McConnell, J.E. Greene, J.P. Blakeslee and R. Janish, 2016 A 17-billion-solar-mass black hole in a group galaxy with a diffuse core, https://doi.org/10.1038/nature17197 Nature532 340 [1604.01400] · doi:10.1038/nature17197
[88] E. Treister, K. Schawinski, M. Volonteri, P. Natarajan and E. Gawiser, 2011 Black hole growth in the early universe is self-regulated and largely hidden from view, https://doi.org/10.1038/nature10103 Nature474 356 [1106.3079] · doi:10.1038/nature10103
[89] M. Rogatko and K.I. Wysokiński, 2016 P-wave holographic superconductor/insulator phase transitions affected by dark matter sector J. High Energy Phys. JHEP03(2016)215 [1508.02869] · doi:10.1007/JHEP03(2016)215
[90] M. Rogatko and K.I. Wysokiński, 2016 Condensate flow in holographic models in the presence of dark matter J. High Energy Phys. JHEP10(2016)152 [1608.00343] · Zbl 1390.83146 · doi:10.1007/JHEP10(2016)152
[91] A. Ashtekar, S. Fairhurst and B. Krishnan, 2000 Isolated horizons: Hamiltonian evolution and the first law, https://doi.org/10.1103/PhysRevD.62.104025 Phys. Rev. D 62 104025 [gr-qc/0005083] · doi:10.1103/PhysRevD.62.104025
[92] A. Corichi, U. Nucamendi and D. Sudarsky, 2000 Einstein-Yang-Mills isolated horizons: phase space, mechanics, hair and conjectures, https://doi.org/10.1103/PhysRevD.62.044046 Phys. Rev. D 62 044046 [gr-qc/0002078] · doi:10.1103/PhysRevD.62.044046
[93] S. McCormick, 2014 The phase space for the Einstein-Yang-Mills equations and the first law of black hole thermodynamics, https://doi.org/10.4310/ATMP.2014.v18.n4.a2 Adv. Theor. Math. Phys.18 799 [1302.1237] · Zbl 1310.83022 · doi:10.4310/ATMP.2014.v18.n4.a2
[94] A. Schild, 1963 Electromagnetic two-body problem, https://doi.org/10.1103/physrev.131.2762 Phys. Rev.131 2762 · Zbl 0122.44903 · doi:10.1103/physrev.131.2762
[95] J.L. Friedman and K. Uryu, 2006 Post-Minkowski action for point-particles and a helically symmetric binary solution, https://doi.org/10.1103/PhysRevD.73.104039 Phys. Rev. D 73 104039 [gr-qc/0510002] · doi:10.1103/PhysRevD.73.104039
[96] V. Iyer and R.M. Wald, 1995 A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, https://doi.org/10.1103/PhysRevD.52.4430 Phys. Rev. D 52 4430 [gr-qc/9503052] · doi:10.1103/PhysRevD.52.4430
[97] V. Iyer, 1997 Lagrangian perfect fluids and black hole mechanics, https://doi.org/10.1103/PhysRevD.55.3411 Phys. Rev. D 55 3411 [gr-qc/9610025] · doi:10.1103/PhysRevD.55.3411
[98] R.D. Sorkin, 1991 The gravitational-electromagnetic Noether operator and the second-order energy flux, https://doi.org/10.1098/rspa.1991.0166 Proc. Roy. Soc. London A 435 635 · Zbl 0753.35115 · doi:10.1098/rspa.1991.0166
[99] J.D. Brown, 1993 Action functionals for relativistic perfect fluids, https://doi.org/10.1088/0264-9381/10/8/017 Class. Quant. Grav.10 1579 [gr-qc/9304026] · Zbl 0788.76101 · doi:10.1088/0264-9381/10/8/017
[100] B.F. Schutz and R. Sorkin, 1977 Variational aspects of relativistic field theories, with application to perfect fluids, https://doi.org/10.1016/0003-4916(77)90200-7 Annals Phys.107 1 · Zbl 0363.49015 · doi:10.1016/0003-4916(77)90200-7
[101] B. Carter, 1994 Axionic vorticity variational formulation for relativistic perfect fluids, https://doi.org/10.1088/0264-9381/11/8/009 Class. Quant. Grav.11 2013 · doi:10.1088/0264-9381/11/8/009
[102] J. Lee and R.M. Wald, 1990 Local symmetries and constraints, https://doi.org/10.1063/1.528801 J. Math. Phys.31 725 · Zbl 0704.70013 · doi:10.1063/1.528801
[103] G. Burnett and R.M. Wald, 1990 A conserved current for perturbations of Einstein-Maxwell space-times, https://doi.org/10.1098/rspa.1990.0080 Proc. Roy. Soc. London A 430 57 · Zbl 0705.53038 · doi:10.1098/rspa.1990.0080
[104] E. Poisson, 2004 A relativist’s toolkit: the mathematics of black-hole mechanics, Cambridge University Press, Cambridge U.K., · Zbl 1140.83004 · doi:10.1017/CBO9780511606601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.