×

Testing the equivalence principle on cosmological scales. (English) Zbl 1536.83032

Summary: The equivalence principle, that is one of the main pillars of general relativity, is very well tested in the Solar system; however, its validity is more uncertain on cosmological scales, or when dark matter is concerned. This article shows that relativistic effects in the large-scale structure can be used to directly test whether dark matter satisfies Euler’s equation, i.e. whether its free fall is characterised by geodesic motion, just like baryons and light. After having proposed a general parametrisation for deviations from Euler’s equation, we perform Fisher-matrix forecasts for future surveys like DESI and the SKA, and show that such deviations can be constrained with a precision of order 10%. Deviations from Euler’s equation cannot be tested directly with standard methods like redshift-space distortions and gravitational lensing, since these observables are not sensitive to the time component of the metric. Our analysis shows therefore that relativistic effects bring new and complementary constraints to alternative theories of gravity.

MSC:

83C56 Dark matter and dark energy
83C10 Equations of motion in general relativity and gravitational theory

References:

[1] Planck collaboration, R. Adam et al., 2016 Planck 2015 results. I. Overview of products and scientific results, https://doi.org/10.1051/0004-6361/201527101 Astron. Astrophys.594 A1 [1502.01582] · doi:10.1051/0004-6361/201527101
[2] DESI collaboration, A. Aghamousa et al., The DESI Experiment Part I: Science,Targeting and Survey Design, [1611.00036]
[3] EUCLID collaboration, R. Laureijs et al., Euclid Definition Study Report, [1110.3193]
[4] R. Braun, T. Bourke, J.A. Green, E. Keane and J. Wagg, Advancing Astrophysics with the Square Kilometre Array, POS(AASKA14)174
[5] LSST Science, LSST Project collaboration, P.A. Abell et al., LSST Science Book, Version 2.0, [0912.0201]
[6] J.S. Schwinger, 1951 On gauge invariance and vacuum polarization, https://doi.org/10.1103/PhysRev.82.664 Phys. Rev.82664 · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
[7] S. Liberati, 2013 Tests of Lorentz invariance: a 2013 update, https://doi.org/10.1088/0264-9381/30/13/133001 Class. Quant. Grav.30 133001 [1304.5795] · Zbl 1273.83002 · doi:10.1088/0264-9381/30/13/133001
[8] A. Kehagias, J. Noreña, H. Perrier and A. Riotto, 2014 Consequences of Symmetries and Consistency Relations in the Large-Scale Structure of the Universe for Non-local bias and Modified Gravity, https://doi.org/10.1016/j.nuclphysb.2014.03.020 Nucl. Phys. B 883 83 [1311.0786] · Zbl 1323.83036 · doi:10.1016/j.nuclphysb.2014.03.020
[9] P. Creminelli, J. Gleyzes, L. Hui, M. Simonović and F. Vernizzi, 2014 Single-Field Consistency Relations of Large Scale Structure. Part III: Test of the Equivalence Principle J. Cosmol. Astropart. Phys.2014 06 009 [1312.6074]
[10] P. Peter and J.-P. Uzan, 2009 Primordial Cosmology Oxford Graduate Texts, Oxford University Press, Oxford U.K.
[11] A. Ferté, D. Kirk, A.R. Liddle and J. Zuntz, Testing gravity on cosmological scales with cosmic shear, cosmic microwave background anisotropies and redshift-space distortions, [1712.01846]
[12] L. Amendola, M. Kunz and D. Sapone, 2008 Measuring the dark side (with weak lensing) J. Cosmol. Astropart. Phys.2008 04 013 [0704.2421]
[13] L. Amendola, M. Kunz, M. Motta, I.D. Saltas and I. Sawicki, 2013 Observables and unobservables in dark energy cosmologies, https://doi.org/10.1103/PhysRevD.87.023501 Phys. Rev. D 87 023501 [1210.0439] · doi:10.1103/PhysRevD.87.023501
[14] BOSS collaboration, S. Alam et al., 2017 The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, https://doi.org/10.1093/mnras/stx721 Mon. Not. Roy. Astron. Soc.470 2617 [1607.03155] · doi:10.1093/mnras/stx721
[15] R. Reyes et al., 2010 Confirmation of general relativity on large scales from weak lensing and galaxy velocities, https://doi.org/10.1038/nature08857 Nature464 256 [1003.2185] · doi:10.1038/nature08857
[16] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XIV. Dark energy and modified gravity, https://doi.org/10.1051/0004-6361/201525814 Astron. Astrophys.594 A14 [1502.01590] · doi:10.1051/0004-6361/201525814
[17] C. Bonvin, L. Hui and E. Gaztañaga, 2014 Asymmetric galaxy correlation functions, https://doi.org/10.1103/PhysRevD.89.083535 Phys. Rev. D 89 083535 [1309.1321] · doi:10.1103/PhysRevD.89.083535
[18] C.S. Lorenz, D. Alonso and P.G. Ferreira, 2018 Impact of relativistic effects on cosmological parameter estimation, https://doi.org/10.1103/PhysRevD.97.023537 Phys. Rev. D 97 023537 [1710.02477] · doi:10.1103/PhysRevD.97.023537
[19] A. Pais, 1982 Subtle Is the Lord... The Science and the Life of Albert Einstein, Oxford University Press, Oxford U.K.
[20] C.M. Will, 2014 The Confrontation between General Relativity and Experiment, https://doi.org/10.12942/lrr-2014-4 Living Rev. Rel.17 4 [1403.7377] · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[21] https://microscope.cnes.fr/en/MICROSCOPE/index.htm
[22] P. Touboul et al., 2017 MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle, https://doi.org/10.1103/PhysRevLett.119.231101 Phys. Rev. Lett.119 231101 [1712.01176] · doi:10.1103/PhysRevLett.119.231101
[23] D. Blas, S. Floerchinger, M. Garny, N. Tetradis and U.A. Wiedemann, 2015 Large scale structure from viscous dark matter J. Cosmol. Astropart. Phys.2015 11 049 [1507.06665]
[24] M. Mathisson, 1937 Neue mechanik materieller systemes Acta Phys. Polon.6 163 · Zbl 0017.43006
[25] A. Papapetrou, 1951 Spinning test particles in general relativity. 1., https://doi.org/10.1098/rspa.1951.0200 Proc. Roy. Soc. Lond. A 209 248 · Zbl 0044.22801 · doi:10.1098/rspa.1951.0200
[26] W.G. Dixon, 1970 Dynamics of extended bodies in general relativity. I. Momentum and angular momentum, https://doi.org/10.1098/rspa.1970.0020 Proc. Roy. Soc. Lond. A 314 499 · doi:10.1098/rspa.1970.0020
[27] C. Chicone, B. Mashhoon and B. Punsly, 2005 Relativistic motion of spinning particles in a gravitational field, https://doi.org/10.1016/j.physleta.2005.05.072 Phys. Lett. A 343 1 [gr-qc/0504146] · Zbl 1181.83148 · doi:10.1016/j.physleta.2005.05.072
[28] J. Adamek, D. Daverio, R. Durrer and M. Kunz, 2016 General relativity and cosmic structure formation, https://doi.org/10.1038/nphys3673 Nature Phys.12 346 [1509.01699] · doi:10.1038/nphys3673
[29] E. Poisson, 2004 The Motion of point particles in curved space-time, https://doi.org/10.12942/lrr-2004-6 Living Rev. Rel.7 6 [gr-qc/0306052] · Zbl 1071.83011 · doi:10.12942/lrr-2004-6
[30] S.M. Carroll, S. Mantry, M.J. Ramsey-Musolf and C.W. Stubbs, 2009 Dark-Matter-Induced Weak Equivalence Principle Violation, https://doi.org/10.1103/PhysRevLett.103.011301 Phys. Rev. Lett.103 011301 [0807.4363] · doi:10.1103/PhysRevLett.103.011301
[31] L. Hui, A. Nicolis and C. Stubbs, 2009 Equivalence Principle Implications of Modified Gravity Models, https://doi.org/10.1103/PhysRevD.80.104002 Phys. Rev. D 80 104002 [0905.2966] · doi:10.1103/PhysRevD.80.104002
[32] B. Jain and J. VanderPlas, 2011 Tests of Modified Gravity with Dwarf Galaxies J. Cosmol. Astropart. Phys.2011 10 032 [1106.0065]
[33] P. Brax, A.-C. Davis, B. Li and H.A. Winther, 2012 A Unified Description of Screened Modified Gravity, https://doi.org/10.1103/PhysRevD.86.044015 Phys. Rev. D 86 044015 [1203.4812] · doi:10.1103/PhysRevD.86.044015
[34] C.W. Stubbs, 1993 Experimental limits on any long range nongravitational interaction between dark matter and ordinary matter, https://doi.org/10.1103/PhysRevLett.70.119 Phys. Rev. Lett.70 119 · doi:10.1103/PhysRevLett.70.119
[35] N. Deruelle, 2011 Nordstrom’s scalar theory of gravity and the equivalence principle, https://doi.org/10.1007/s10714-011-1247-x Gen. Rel. Grav.43 3337 [1104.4608] · Zbl 1230.83075 · doi:10.1007/s10714-011-1247-x
[36] K. Nordtvedt, 1968 Equivalence Principle for Massive Bodies. 1. Phenomenology, https://doi.org/10.1103/PhysRev.169.1014 Phys. Rev.169 1014 · doi:10.1103/PhysRev.169.1014
[37] L. Hui and A. Nicolis, 2012 Proposal for an Observational Test of the Vainshtein Mechanism, https://doi.org/10.1103/PhysRevLett.109.051304 Phys. Rev. Lett.109 051304 [1201.1508] · doi:10.1103/PhysRevLett.109.051304
[38] J. Sakstein, B. Jain, J.S. Heyl and L. Hui, 2017 Tests of Gravity Theories Using Supermassive Black Holes, https://doi.org/10.3847/2041-8213/aa7e26 Astrophys. J.844 L14 [1704.02425] · doi:10.3847/2041-8213/aa7e26
[39] J.A. Frieman and B.-A. Gradwohl, 1991 Dark matter and the equivalence principle, https://doi.org/10.1103/PhysRevLett.67.2926 Phys. Rev. Lett.67 2926 · doi:10.1103/PhysRevLett.67.2926
[40] H. Desmond, P.G. Ferreira, G. Lavaux and J. Jasche, The Fifth Force in the Local Cosmic Web, [1802.07206]
[41] G.W. Horndeski, 1974 Second-order scalar-tensor field equations in a four-dimensional space, https://doi.org/10.1007/BF01807638 Int. J. Theor. Phys.10 363 · doi:10.1007/BF01807638
[42] C. Deffayet, G. Esposito-Farese and A. Vikman, 2009 Covariant Galileon, https://doi.org/10.1103/PhysRevD.79.084003 Phys. Rev. D 79 084003 [0901.1314] · doi:10.1103/PhysRevD.79.084003
[43] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, 2015 Healthy theories beyond Horndeski, https://doi.org/10.1103/PhysRevLett.114.211101 Phys. Rev. Lett.114 211101 [1404.6495] · doi:10.1103/PhysRevLett.114.211101
[44] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, 2015 Exploring gravitational theories beyond Horndeski J. Cosmol. Astropart. Phys.2015 02 018 [1408.1952]
[45] M. Zumalacárregui and J. García-Bellido, 2014 Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian, https://doi.org/10.1103/PhysRevD.89.064046 Phys. Rev. D 89 064046 [1308.4685] · doi:10.1103/PhysRevD.89.064046
[46] J. Gleyzes, D. Langlois and F. Vernizzi, 2015 A unifying description of dark energy, https://doi.org/10.1142/S021827181443010X Int. J. Mod. Phys. D 23 1443010 [1411.3712] · Zbl 1314.83055 · doi:10.1142/S021827181443010X
[47] J. Gleyzes, D. Langlois, M. Mancarella and F. Vernizzi, 2015 Effective Theory of Interacting Dark Energy J. Cosmol. Astropart. Phys.2015 08 054 [1504.05481]
[48] Virgo, LIGO Scientific collaboration, B. Abbott et al., 2017 GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, https://doi.org/10.1103/PhysRevLett.119.161101 Phys. Rev. Lett.119 161101 [1710.05832] · doi:10.1103/PhysRevLett.119.161101
[49] A. Goldstein et al., 2017 An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A, https://doi.org/10.3847/2041-8213/aa8f41 Astrophys. J.848 L14 [1710.05446] · doi:10.3847/2041-8213/aa8f41
[50] V. Savchenko et al., 2017 INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817, https://doi.org/10.3847/2041-8213/aa8f94 Astrophys. J.848 L15 [1710.05449] · doi:10.3847/2041-8213/aa8f94
[51] L. Lombriser and A. Taylor, 2016 Breaking a Dark Degeneracy with Gravitational Waves J. Cosmol. Astropart. Phys.2016 03 031 [1509.08458]
[52] L. Lombriser and N.A. Lima, 2017 Challenges to Self-Acceleration in Modified Gravity from Gravitational Waves and Large-Scale Structure, https://doi.org/10.1016/j.physletb.2016.12.048 Phys. Lett. B 765 382 [1602.07670] · Zbl 1369.83078 · doi:10.1016/j.physletb.2016.12.048
[53] J.M. Ezquiaga and M. Zumalacárregui, 2017 Dark Energy After GW170817: Dead Ends and the Road Ahead, https://doi.org/10.1103/PhysRevLett.119.251304 Phys. Rev. Lett.119 251304 [1710.05901] · doi:10.1103/PhysRevLett.119.251304
[54] P. Creminelli and F. Vernizzi, 2017 Dark Energy after GW170817 and GRB170817A, https://doi.org/10.1103/PhysRevLett.119.251302 Phys. Rev. Lett.119 251302 [1710.05877] · doi:10.1103/PhysRevLett.119.251302
[55] J. Sakstein and B. Jain, 2017 Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories, https://doi.org/10.1103/PhysRevLett.119.251303 Phys. Rev. Lett.119 251303 [1710.05893] · doi:10.1103/PhysRevLett.119.251303
[56] T. Baker, E. Bellini, P.G. Ferreira, M. Lagos, J. Noller and I. Sawicki, 2017 Strong constraints on cosmological gravity from GW170817 and GRB 170817A, https://doi.org/10.1103/PhysRevLett.119.251301 Phys. Rev. Lett.119 251301 [1710.06394] · doi:10.1103/PhysRevLett.119.251301
[57] D. Langlois, R. Saito, D. Yamauchi and K. Noui, 2018 Scalar-tensor theories and modified gravity in the wake of GW170817, https://doi.org/10.1103/PhysRevD.97.061501 Phys. Rev. D 97 061501 [1711.07403] · doi:10.1103/PhysRevD.97.061501
[58] T. Jacobson and D. Mattingly, 2001 Gravity with a dynamical preferred frame, https://doi.org/10.1103/PhysRevD.64.024028 Phys. Rev. D 64 024028 [gr-qc/0007031] · doi:10.1103/PhysRevD.64.024028
[59] T. Jacobson, Einstein-aether gravity: a status report, PoS(QG-Ph)020 [0801.1547]
[60] B. Audren, D. Blas, M.M. Ivanov, J. Lesgourgues and S. Sibiryakov, 2015 Cosmological constraints on deviations from Lorentz invariance in gravity and dark matter J. Cosmol. Astropart. Phys.2015 03 016 [1410.6514]
[61] D. Blas, M.M. Ivanov and S. Sibiryakov, 2012 Testing Lorentz invariance of dark matter J. Cosmol. Astropart. Phys.2012 10 057 [1209.0464]
[62] S.M. Carroll and E.A. Lim, 2004 Lorentz-violating vector fields slow the universe down, https://doi.org/10.1103/PhysRevD.70.123525 Phys. Rev. D 70 123525 [hep-th/0407149] · doi:10.1103/PhysRevD.70.123525
[63] J. Oost, S. Mukohyama and A. Wang, Constraints on Einstein-aether theory after GW170817, [1802.04303]
[64] P. Hořava, 2009 Quantum Gravity at a Lifshitz Point, https://doi.org/10.1103/PhysRevD.79.084008 Phys. Rev. D 79 084008 [0901.3775] · doi:10.1103/PhysRevD.79.084008
[65] D. Blas, O. Pujolàs and S. Sibiryakov, 2010 Consistent Extension of Hořava Gravity, https://doi.org/10.1103/PhysRevLett.104.181302 Phys. Rev. Lett.104 181302 [0909.3525] · doi:10.1103/PhysRevLett.104.181302
[66] D. Blas, O. Pujolàs and S. Sibiryakov, 2011 Models of non-relativistic quantum gravity: The Good, the bad and the healthy J. High Energy Phys. JHEP04(2011)018 [1007.3503] · Zbl 1250.83031 · doi:10.1007/JHEP04(2011)018
[67] T.G. Zlosnik, P.G. Ferreira and G.D. Starkman, 2007 Modifying gravity with the Aether: An alternative to Dark Matter, https://doi.org/10.1103/PhysRevD.75.044017 Phys. Rev. D 75 044017 [astro-ph/0607411] · doi:10.1103/PhysRevD.75.044017
[68] H. Zhao, 2007 Coincidences of Dark Energy with Dark Matter: Clues for a Simple Alternative?, https://doi.org/10.1086/524731 Astrophys. J.671 L1 [0710.3616] · doi:10.1086/524731
[69] D. Bettoni, A. Nusser, D. Blas and S. Sibiryakov, 2017 Testing Lorentz invariance of dark matter with satellite galaxies J. Cosmol. Astropart. Phys.2017 05 024 [1702.07726] · Zbl 1515.83297
[70] J. Yoo, A.L. Fitzpatrick and M. Zaldarriaga, 2009 A New Perspective on Galaxy Clustering as a Cosmological Probe: General Relativistic Effects, https://doi.org/10.1103/PhysRevD.80.083514 Phys. Rev. D 80 083514 [0907.0707] · doi:10.1103/PhysRevD.80.083514
[71] C. Bonvin and R. Durrer, 2011 What galaxy surveys really measure, https://doi.org/10.1103/PhysRevD.84.063505 Phys. Rev. D 84 063505 [1105.5280] · doi:10.1103/PhysRevD.84.063505
[72] A. Challinor and A. Lewis, 2011 The linear power spectrum of observed source number counts, https://doi.org/10.1103/PhysRevD.84.043516 Phys. Rev. D 84 043516 [1105.5292] · doi:10.1103/PhysRevD.84.043516
[73] N. Kaiser, 1987 Clustering in real space and in redshift space Mon. Not. Roy. Astron. Soc.227 1 · doi:10.1093/mnras/227.1.1
[74] A.J.S. Hamilton, 1996 Linear redshift distortions: A Review, in Ringberg Workshop on Large Scale Structure, Ringberg Germany [astro-ph/9708102]
[75] R.A.C. Croft, 2013 Gravitational redshifts from large-scale structure https://doi.org/10.1093/mnras/stt1223 Mon. Not. Roy. Astron. Soc.434 3008 [1304.4124] · doi:10.1093/mnras/stt1223
[76] P. McDonald, 2009 Gravitational redshift and other redshift-space distortions of the imaginary part of the power spectrum J. Cosmol. Astropart. Phys.2009 11 026 [0907.5220]
[77] J. Yoo, N. Hamaus, U. Seljak and M. Zaldarriaga, 2012 Going beyond the Kaiser redshift-space distortion formula: a full general relativistic account of the effects and their detectability in galaxy clustering, https://doi.org/10.1103/PhysRevD.86.063514 Phys. Rev. D 86 063514 [1206.5809] · doi:10.1103/PhysRevD.86.063514
[78] C. Bonvin, L. Hui and E. Gaztañaga, 2016 Optimising the measurement of relativistic distortions in large-scale structure J. Cosmol. Astropart. Phys.2016 08 021 [1512.03566]
[79] P.H.F. Reimberg, F. Bernardeau and C. Pitrou, 2016 Redshift-space distortions with wide angular separations J. Cosmol. Astropart. Phys.2016 01 048 [1506.06596]
[80] R. Wojtak, S.H. Hansen and J. Hjorth, 2011 Gravitational redshift of galaxies in clusters as predicted by general relativity, https://doi.org/10.1038/nature10445 Nature477 567 [1109.6571] · doi:10.1038/nature10445
[81] I. Sadeh, L.L. Feng and O. Lahav, 2015 Gravitational Redshift of Galaxies in Clusters from the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey, https://doi.org/10.1103/PhysRevLett.114.071103 Phys. Rev. Lett.114 071103 [1410.5262] · doi:10.1103/PhysRevLett.114.071103
[82] S. Alam, H. Zhu, R.A.C. Croft, S. Ho, E. Giusarma and D.P. Schneider, 2017 Relativistic distortions in the large-scale clustering of SDSS-III BOSS CMASS galaxies, https://doi.org/10.1093/mnras/stx1421 Mon. Not. Roy. Astron. Soc.470 2822 [1709.07855] · doi:10.1093/mnras/stx1421
[83] H. Zhao, J.A. Peacock and B. Li, 2013 Testing gravity theories via transverse Doppler and gravitational redshifts in galaxy clusters, https://doi.org/10.1103/PhysRevD.88.043013 Phys. Rev. D 88 043013 [1206.5032] · doi:10.1103/PhysRevD.88.043013
[84] N. Kaiser, 2013 Measuring Gravitational Redshifts in Galaxy Clusters, https://doi.org/10.1093/mnras/stt1370 Mon. Not. Roy. Astron. Soc.435 1278 [1303.3663] · doi:10.1093/mnras/stt1370
[85] Y.-C. Cai, N. Kaiser, S. Cole and C. Frenk, 2017 Gravitational redshift and asymmetric redshift-space distortions for stacked clusters, https://doi.org/10.1093/mnras/stx469 Mon. Not. Roy. Astron. Soc.468 1981 [1609.04864] · doi:10.1093/mnras/stx469
[86] P. Bull, 2016 Extending cosmological tests of General Relativity with the Square Kilometre Array, https://doi.org/10.3847/0004-637X/817/1/26 Astrophys. J.817 26 [1509.07562] · doi:10.3847/0004-637X/817/1/26
[87] A. Hall and C. Bonvin, 2017 Measuring cosmic velocities with 21 cm intensity mapping and galaxy redshift survey cross-correlation dipoles, https://doi.org/10.1103/PhysRevD.95.043530 Phys. Rev. D 95 043530 [1609.09252] · doi:10.1103/PhysRevD.95.043530
[88] E. Gaztañaga, C. Bonvin and L. Hui, 2017 Measurement of the dipole in the cross-correlation function of galaxies J. Cosmol. Astropart. Phys.2017 01 032 [1512.03918]
[89] W.J. Percival et al., 2007 The shape of the SDSS DR5 galaxy power spectrum, https://doi.org/10.1086/510615 Astrophys. J.657 645 [astro-ph/0608636] · doi:10.1086/510615
[90] J.G. Cresswell and W.J. Percival, 2009 Scale Dependent Galaxy Bias in the SDSS as a function of Luminosity and Colour, https://doi.org/10.1111/j.1365-2966.2008.14082.x Mon. Not. Roy. Astron. Soc.392 682 [0808.1101] · doi:10.1111/j.1365-2966.2008.14082.x
[91] BOSS collaboration, L. Anderson et al., 2014 The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples, https://doi.org/10.1093/mnras/stu523 Mon. Not. Roy. Astron. Soc.441 24 [1312.4877] · doi:10.1093/mnras/stu523
[92] J. Gleyzes, D. Langlois, M. Mancarella and F. Vernizzi, 2016 Effective Theory of Dark Energy at Redshift Survey Scales J. Cosmol. Astropart. Phys.2016 02 056 [1509.02191]
[93] E. Bellini, A.J. Cuesta, R. Jimenez and L. Verde, 2016 Constraints on deviations from ΛCDM within Horndeski gravity J. Cosmol. Astropart. Phys.2016 02 053 [Erratum ibid 06 (2016) E01] [1509.07816]
[94] D. Alonso, E. Bellini, P.G. Ferreira and M. Zumalacárregui, 2017 Observational future of cosmological scalar-tensor theories, https://doi.org/10.1103/PhysRevD.95.063502 Phys. Rev. D 95 063502 [1610.09290] · doi:10.1103/PhysRevD.95.063502
[95] J.S.Y. Leung and Z. Huang, 2017 Marginalized Fisher Forecast for Horndeski Dark Energy Models, https://doi.org/10.1142/S0218271817500705 Int. J. Mod. Phys. D 26 1750070 [1604.07330] · doi:10.1142/S0218271817500705
[96] L. Lombriser, J. Yoo and K. Koyama, 2013 Relativistic effects in galaxy clustering in a parametrized post-Friedmann universe, https://doi.org/10.1103/PhysRevD.87.104019 Phys. Rev. D 87 104019 [1301.3132] · doi:10.1103/PhysRevD.87.104019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.