×

Gap solitons in Bose-Einstein condensate loaded in a honeycomb optical lattice: nonlinear dynamical stability, tunneling, and self-trapping. (English) Zbl 1528.81154

Summary: We investigate the gap solitons of Bose-Einstein condensate in honeycomb optical lattices. It is found that the two-dimensional honeycomb optical lattices admit multipole gap solitons. These multipoles can have their bright solitary structures be in-phase or out-of-phase. The nonlinear dynamical stabilities of these solitons are investigated using direct simulations of the Gross-Pitaevskii equation. For the unipole gap solitons, the nonlinear evolution shows dynamical stability or instability, which depends on the properties of atomic interactions and the dependence of soliton power. A fascinating property of dipole gap solitons is that they can present self-trapping or tunneling instabilities under atomic nonlinearity. The in-phase and out-of-phase of multipole gap solitons support different tunneling or self-trapping regimes. These results have an application to investigations of localized structures in nonlinear optics and Bose-Einstein condensate.

MSC:

81Q80 Special quantum systems, such as solvable systems
82C22 Interacting particle systems in time-dependent statistical mechanics
Full Text: DOI

References:

[1] Morsch, Oliver; Oberthaler, Markus, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Modern Phys., 78, 179-215 (2006)
[2] Lewenstein, Maciej; Sanpera, Anna; Ahufinger, Veronica; Damski, Bogdan; Sen(De), Aditi; Sen, Ujjwal, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, Adv. Phys., 56, 2, 243-379 (2007)
[3] Eckardt, André, Colloquium: Atomic quantum gases in periodically driven optical lattices, Rev. Modern Phys., 89, Article 011004 pp. (2017)
[4] Greiner, Markus; Mandel, Olaf; Esslinger, Tilman; Hänsch, Theodor W.; Bloch, Immanuel, Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms, Nature, 415, 39-44 (2002)
[5] Georgescu, I. M.; Ashhab, S.; Nori, Franco, Quantum simulation, Rev. Modern Phys., 86, 153-185 (2014)
[6] Ladd, T. D.; Jelezko, F.; Laflamme, R.; Nakamura, Y.; Monroe, C.; OBrien, J. L., Quantum computation with ultracold atoms in a driven optical lattice, Nature, 464, 1476-4687 (2010)
[7] Katsnelson, Mikhail I., Graphene: Carbon in Two Dimensions (2012), Cambridge University Press
[8] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films, Science, 306, 5696, 666-669 (2004)
[9] Castro Neto, A. H.; Guinea, F.; Peres, N. M.R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene, Rev. Modern Phys., 81, 109-162 (2009)
[10] Polini, Marco; Guinea, Francisco; Lewenstein, Maciej; Manoharan, Hari C.; Pellegrini, Vittorio, Artificial honeycomb lattices for electrons, atoms and photons, Nat. Nanotechnol., 8, 9, 625-633 (2013)
[11] Lederer, Falk; Stegeman, George I.; Christodoulides, Demetri N.; Assanto, Gaetano; Segev, Moti; Silberberg, Yaron, Discrete solitons in optics, Phys. Rep., 463, 1, 1-126 (2008)
[12] Rechtsman, Mikael C.; Zeuner, Julia M.; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander, Photonic floquet topological insulators, Nature, 8808, 7444, 196 (2013)
[13] Ablowitz, Mark J.; Zhu, Yi, Nonlinear dynamics of bloch wave packets in honeycomb lattices, (Malomed, Boris A., Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations (2013), Springer: Springer Berlin, Heidelberg), 1-26 · Zbl 1273.78019
[14] Windpassinger, Patrick; Sengstock, Klaus, Engineering novel optical lattices, Rep. Progr. Phys., 76, 8, Article 086401 pp. (2013)
[15] Zobay, O.; Pötting, S.; Meystre, P.; Wright, E. M., Creation of gap solitons in Bose-Einstein condensates, Phys. Rev. A, 59, 643-648 (1999)
[16] Louis, Pearl J. Y.; Ostrovskaya, Elena A.; Savage, Craig M.; Kivshar, Yuri S., Bose-Einstein condensates in optical lattices: Band-gap structure and solitons, Phys. Rev. A, 67, Article 013602 pp. (2003)
[17] Eiermann, B.; Anker, Th.; Albiez, M.; Taglieber, M.; Treutlein, P.; Marzlin, K.-P.; Oberthaler, M. K., Bright Bose-Einstein gap solitons of atoms with repulsive interaction, Phys. Rev. Lett., 92, Article 230401 pp. (2004)
[18] Chen, Yi-Fan; Beckwitt, Kale; Wise, Frank W.; Malomed, Boris A., Criteria for the experimental observation of multidimensional optical solitons in saturable media, Phys. Rev. E, 70, Article 046610 pp. (2004)
[19] Shi, Zuoqiang; Yang, Jianke, Solitary waves bifurcated from bloch-band edges in two-dimensional periodic media, Phys. Rev. E, 75, Article 056602 pp. (2007)
[20] Lederer, Falk; Stegeman, George I.; Christodoulides, Demetri N.; Assanto, Gaetano; Segev, Moti; Silberberg, Yaron, Discrete solitons in optics, Phys. Rep., 463, 1, 1-126 (2008)
[21] Cerda-Méndez, E. A.; Sarkar, D.; Krizhanovskii, D. N.; Gavrilov, S. S.; Biermann, K.; Skolnick, M. S.; Santos, P. V., Exciton-polariton gap solitons in two-dimensional lattices, Phys. Rev. Lett., 111, Article 146401 pp. (2013)
[22] Ostrovskaya, Elena A.; Kivshar, Yuri S., Matter-wave gap solitons in atomic band-gap structures, Phys. Rev. Lett., 90, Article 160407 pp. (2003)
[23] Kartashov, Yaroslav V.; Konotop, Vladimir V.; Abdullaev, Fatkhulla Kh., Gap solitons in a spin-orbit-coupled Bose-Einstein condensate, Phys. Rev. Lett., 111, Article 060402 pp. (2013)
[24] Sakaguchi, Hidetsugu; Malomed, Boris A., One- and two-dimensional gap solitons in spin-orbit-coupled systems with Zeeman splitting, Phys. Rev. A, 97, Article 013607 pp. (2018)
[25] Fan, Zhiwei; Chen, Zhaopin; Li, Yongyao; Malomed, Boris A., Gap and embedded solitons in microwave-coupled binary condensates, Phys. Rev. A, 101, Article 013607 pp. (2020)
[26] Lobanov, Valery E.; Kartashov, Yaroslav V.; Konotop, Vladimir V., Fundamental, multipole, and half-vortex gap solitons in spin-orbit coupled Bose-Einstein condensates, Phys. Rev. Lett., 112, Article 180403 pp. (2014)
[27] Zhang, Yongping; Xu, Yong; Busch, Thomas, Gap solitons in spin-orbit-coupled Bose-Einstein condensates in optical lattices, Phys. Rev. A, 91, Article 043629 pp. (2015)
[28] Solnyshkov, D. D.; Bleu, O.; Teklu, B.; Malpuech, G., Chirality of topological gap solitons in bosonic dimer chains, Phys. Rev. Lett., 118, Article 023901 pp. (2017)
[29] Li, Yongyao; Liu, Yan; Fan, Zhiwei; Pang, Wei; Fu, Shenhe; Malomed, Boris A., Two-dimensional dipolar gap solitons in free space with spin-orbit coupling, Phys. Rev. A, 95, Article 063613 pp. (2017)
[30] Cheng, Szu-Cheng; Chen, Ting-Wei, Dark gap solitons in exciton-polariton condensates in a periodic potential, Phys. Rev. E, 97, Article 032212 pp. (2018)
[31] Chen, Ting-Wei; Cheng, Szu-Cheng, Surface gap solitons in exciton polariton condensates, Phys. Rev. E, 98, Article 032212 pp. (2018)
[32] Rodas-Verde, María I.; Michinel, Humberto; Pérez-García, Víctor M., Controllable soliton emission from a Bose-Einstein condensate, Phys. Rev. Lett., 95, Article 153903 pp. (2005)
[33] Dekel, G.; Fleurov, V.; Soffer, A.; Stucchio, C., Temporal dynamics of tunneling: Hydrodynamic approach, Phys. Rev. A, 75, Article 043617 pp. (2007)
[34] Barak, Assaf; Peleg, Or; Stucchio, Chris; Soffer, Avy; Segev, Mordechai, Observation of soliton tunneling phenomena and soliton ejection, Phys. Rev. Lett., 100, Article 153901 pp. (2008)
[35] Alberucci, Alessandro; Jisha, Chandroth P.; Lee, Ray-Kuang; Assanto, Gaetano, Soliton self-routing in a finite photonic potential, Opt. Lett., 38, 12, 2071-2073 (2013)
[36] Wang, Ching-Hao; Hong, Tzay-Ming; Lee, Ray-Kuang; Wang, Daw-Wei, Particle-wave duality in quantum tunneling of a bright soliton, Opt. Express, 20, 20, Article 22675-22682 (2012)
[37] Sprenger, P.; Hoefer, M. A.; El, G. A., Hydrodynamic optical soliton tunneling, Phys. Rev. E, 97, Article 032218 pp. (2018)
[38] Anderson, D.; Lisak, M.; Malomed, B.; Quiroga-Teixeiro, M., Tunneling of an optical soliton through a fiber junction, J. Opt. Soc. Amer. B, 11, 12, 2380-2384 (1994)
[39] Zhong, Wei-Ping; Belić, Milivoj R., Soliton tunneling in the nonlinear Schrödinger equation with variable coefficients and an external harmonic potential, Phys. Rev. E, 81, Article 056604 pp. (2010)
[40] Wang, Juanfen; Li, Lu; Jia, Suotang, Nonlinear tunneling of optical similaritons in nonlinear waveguides, J. Opt. Soc. Amer. B, 25, 8, 1254-1260 (2008)
[41] Yang, Rongcao; Wu, Xiaoling, Spatial soliton tunneling, compression and splitting, Opt. Express, 16, 22, 17759-17767 (2008)
[42] Loomba, Shally; Kaur, Harleen; Gupta, Rama; Kumar, C. N.; Raju, Thokala Soloman, Controlling rogue waves in inhomogeneous Bose-Einstein condensates, Phys. Rev. E, 89, Article 052915 pp. (2014)
[43] Xu, Zhiyong; Kartashov, Yaroslav V.; Torner, Lluis, Stabilization of vector soliton complexes in nonlocal nonlinear media, Phys. Rev. E, 73, Article 055601 pp. (2006)
[44] Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.; Mihalache, Dumitru, Multipole vector solitons in nonlocal nonlinear media, Opt. Lett., 31, 10, 1483-1485 (2006)
[45] Zhong, Wei-Ping; Belić, Milivoj R.; Assanto, Gaetano; Malomed, Boris A.; Huang, Tingwen, Self-trapping of scalar and vector dipole solitary waves in kerr media, Phys. Rev. A, 83, Article 043833 pp. (2011)
[46] Alberucci, Alessandro; Peccianti, Marco; Assanto, Gaetano; Dyadyusha, Andriy; Kaczmarek, Malgosia, Two-color vector solitons in nonlocal media, Phys. Rev. Lett., 97, Article 153903 pp. (2006)
[47] Assanto, Gaetano; Smyth, Noel F.; Worthy, Annette L., Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals, Phys. Rev. A, 78, Article 013832 pp. (2008)
[48] Bennet, Francis H.; Alexander, Tristram J.; Haslinger, Franz; Mitchell, Arnan; Neshev, Dragomir N.; Kivshar, Yuri S., Observation of nonlinear self-trapping of broad beams in defocusing waveguide arrays, Phys. Rev. Lett., 106, Article 093901 pp. (2011)
[49] Peleg, Or; Bartal, Guy; Freedman, Barak; Manela, Ofer; Segev, Mordechai; Christodoulides, Demetrios N., Conical diffraction and gap solitons in honeycomb photonic lattices, Phys. Rev. Lett., 98, Article 103901 pp. (2007)
[50] Diebel, Falko; Leykam, Daniel; Kroesen, Sebastian; Denz, Cornelia; Desyatnikov, Anton S., Conical diffraction and composite Lieb bosons in photonic lattices, Phys. Rev. Lett., 116, Article 183902 pp. (2016)
[51] Kevrekidis, P. G.; Malomed, B. A.; Gaididei, Yu. B., Solitons in triangular and honeycomb dynamical lattices with the cubic nonlinearity, Phys. Rev. E, 66, Article 016609 pp. (2002)
[52] Grynberg, G.; Lounis, B.; Verkerk, P.; Courtois, J.-Y.; Salomon, C., Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials, Phys. Rev. Lett., 70, 2249-2252 (1993)
[53] Wunsch, B.; Guinea, F.; Sols, F., Dirac-point engineering and topological phase transitions in honeycomb optical lattices, New J. Phys., 10, 10, Article 103027 pp. (2008)
[54] Ablowitz, Mark J.; Zhu, Yi, Evolution of Bloch-mode envelopes in two-dimensional generalized honeycomb lattices, Phys. Rev. A, 82, Article 013840 pp. (2010)
[55] Wu, Biao; Niu, Qian, Landau and dynamical instabilities of the superflow of Bose-Einstein condensates in optical lattices, Phys. Rev. A, 64, Article 061603 pp. (2001)
[56] Wu, Biao; Niu, Qian, Superfluidity of Bose-Einstein condensate in an optical lattice: Landau-Zener tunnelling and dynamical instability, New J. Phys., 5, 104 (2003)
[57] Diakonov, Dmitri; Jensen, L. M.; Pethick, C. J.; Smith, H., Loop structure of the lowest bloch band for a Bose-Einstein condensate, Phys. Rev. A, 66, Article 013604 pp. (2002)
[58] Yang, Jianke, Nonlinear Waves in Integrable and Nonintegrable Systems (2010), SIAM: SIAM Philadelphia · Zbl 1234.35006
[59] Yang, Jianke, Newton-conjugate-gradient methods for solitary wave computations, J. Comput. Phys., 228, 18, 7007-7024 (2009) · Zbl 1175.65123
[60] Alexander, Tristram J.; Ostrovskaya, Elena A.; Kivshar, Yuri S., Self-trapped nonlinear matter waves in periodic potentials, Phys. Rev. Lett., 96, Article 040401 pp. (2006)
[61] Zhang, Yongping; Wu, Biao, Composition relation between gap solitons and Bloch waves in nonlinear periodic systems, Phys. Rev. Lett., 102, Article 093905 pp. (2009)
[62] Zhu, Shi-Liang; Wang, Baigeng; Duan, L.-M., Simulation and detection of Dirac Fermions with cold atoms in an optical lattice, Phys. Rev. Lett., 98, Article 260402 pp. (2007)
[63] Bersch, Christoph; Onishchukov, Georgy; Peschel, Ulf, Optical gap solitons and truncated nonlinear bloch waves in temporal lattices, Phys. Rev. Lett., 109, Article 093903 pp. (2012)
[64] Zhang, Yongping; Liang, Zhaoxin; Wu, Biao, Gap solitons and Bloch waves in nonlinear periodic systems, Phys. Rev. A, 80, Article 063815 pp. (2009)
[65] Kevrekidis, P. G.; Pelinovsky, D. E.; Saxena, A., When linear stability does not exclude nonlinear instability, Phys. Rev. Lett., 114, Article 214101 pp. (2015)
[66] Pola, M.; Stockhofe, J.; Schmelcher, P.; Kevrekidis, P. G., Vortex-bright-soliton dipoles: Bifurcations, symmetry breaking, and soliton tunneling in a vortex-induced double well, Phys. Rev. A, 86, Article 053601 pp. (2012)
[67] Karamatskos, E. T.; Stockhofe, J.; Kevrekidis, P. G.; Schmelcher, P., Stability and tunneling dynamics of a dark-bright soliton pair in a harmonic trap, Phys. Rev. A, 91, Article 043637 pp. (2015)
[68] Zibold, Tilman; Nicklas, Eike; Gross, Christian; Oberthaler, Markus K., Classical bifurcation at the transition from Rabi to Josephson dynamics, Phys. Rev. Lett., 105, Article 204101 pp. (2010)
[69] Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S. R., Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, \( \pi\) oscillations, and macroscopic quantum self-trapping, Phys. Rev. A, 59, 620-633 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.