×

Chase-escape percolation on the 2D square lattice. (English) Zbl 1528.92040

Summary: Chase-escape percolation is a variation of the standard epidemic spread models. In this model, each site can be in one of three states: unoccupied, occupied by a single prey, or occupied by a single predator. Prey particles spread to neighboring empty sites at rate \(p\), and predator particles spread only to neighboring sites occupied by prey particles at rate 1, killing the prey particle that existed at that site. It was found that the prey can survive forever with non-zero probability, if \(p > p_c\) with \(p_c < 1\). Earlier simulations showed that \(p_c\) is very close to 1/2. Using Monte Carlo simulations in \(D = 2\), we estimate the value of \(p_c\) to be \(0.49451 \pm 0.00001\) and the critical exponents are consistent with the undirected percolation universality class. We check that at \(p_c\), the correlation functions at large length scales are rotationally invariant. We define a discrete-time parallel-update version of the model, which brings out the relation between chase-escape and undirected bond percolation. We further show that for all \(p < p_c\), in \(D\) dimensions, the probability that the number of predators in the absorbing configuration is greater than \(s\) is bounded from below by \(\exp(-Kp^{-1} s^{1/D})\), where \(K\) is some \(p\)-independent constant. This is in contrast to the exponentially decaying cluster size distribution in the standard percolation theory. Even so, the scaling function for the cluster size distribution for \(p\) near \(p_c\) decays exponentially: the stretched exponential behavior dominates for \(s \gg s^\ast\), but \(s^\ast\) diverges near \(p_c\). We also study the problem starting from an initial condition with predator particles on all lattice points of the line \(y = 0\) and prey particles on the line \(y = 1\). In this case, for \(p_c < p < 1\), the center of mass of the fluctuating prey and predator fronts travel at the same speed. This speed is strictly smaller than the speed of an Eden front with the same value of \(p\), but with no predators. This is caused by the prey sites at the leading edge being eaten up by predators. The fluctuations of the front follow KPZ scaling both above and below the depinning transition at \(p = 1\).

MSC:

92D30 Epidemiology
60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] Nancollas, G. H., The growth of crystals in solution, Adv. Colloid Interface Sci., 10, 215-252 (1979)
[2] Nielsen, A. E., Nucleation and growth of crystals at high supersaturation, Krist. Tech., 4, 17-38 (1969)
[3] Li, X.; Tung, C. H.; Pey, K. L., The nature of dielectric breakdown, Appl. Phys. Lett., 93, Article 072903 pp. (2008)
[4] Niemeyer, L.; Pietronero, L.; Wiesmann, H. J., Fractal dimension of dielectric breakdown, Phys. Rev. Lett., 52, 1033-1036 (1984)
[5] Allen, R. J.; Waclaw, B., Bacterial growth: a statistical physicist’s guide, Rep. Progr. Phys., 82, Article 016601 pp. (2019)
[6] Waclaw, B.; Bozic, I.; Pittman, M. E.; Hruban, R. H.; Vogelstein, B.; Nowak, M. A., A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity, Nature, 525, 261-264 (2015)
[7] Brú, A.; Albertos, S.; Luis Subiza, J.; García-Asenjo, J. L.; Brú, I., The universal dynamics of tumor growth, Biophys. J., 85, 2948-2961 (2003)
[8] Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M., Theory of rumour spreading in complex social networks, Physica A, 374, 457-470 (2007)
[9] O’Connor, C.; Weatherall, J. O., The Misinformation Age: How False Beliefs Spread (2019), Yale University Press
[10] LaCroix, T.; Geil, A.; O’Connor, C., The dynamics of retraction in epistemic networks (2019), Preprint
[11] Hammersley, J. M.; Welsh, D. J.A., (Neyman, J.; Cam, L. M. Le, Bernoulli 1713 Bayes 1763 Laplace 1813: Anniversary Volume (1965), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 61-110 · Zbl 0137.24307
[12] Hammersley, J. M.; Welsh, D. J.A., First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory, (Neyman, J.; Le Cam, L. M., Bernoulli 1713, Bayes 1763, Laplace 1813 (1965), Springer: Springer Berlin, Heidelberg) · Zbl 0143.40402
[13] Eden, M., A two-dimensional growth process, (Neyman, F., Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV (1961), Univ. of California Press: Univ. of California Press Berkeley), 233 · Zbl 0104.13801
[14] Auffinger, A.; Damron, M.; Hanson, J., (50 Years of First-Passage Percolation. 50 Years of First-Passage Percolation, Univ. Lecture Series, vol. 68 (2017), American Mathematical Soc.) · Zbl 1452.60002
[15] Kardar, M.; Parisi, G.; Zhang, Y.-C., Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 889-892 (1986) · Zbl 1101.82329
[16] Corwin, I., The Kardar-Parisi-Zhang equation and universality class, Random Matrices: Theory Appl., 01, Article 1130001 pp. (2012) · Zbl 1247.82040
[17] Araújo, N.; Grassberger, P.; Kahng, B.; Schrenk, K. J.; Ziff, R. M., Recent advances and open challenges in percolation, Eur. Phys. J. Spec. Top., 223, 2307-2321 (2014)
[18] Hinrichsen, H., Non-equilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys., 49, 7, 815-958 (2000)
[19] Dhar, D., Asymptotic shape of eden clusters, (Stanley, H. E.; Ostrowsky, N., On Growth and Form. On Growth and Form, NATO ASI Series (Series E: Applied Sciences), vol. 100 (1986), Springer: Springer Dordrecht)
[20] Wolf, D. E., Wulff construction and anisotropic surface properties of two-dimensional Eden clusters, J. Phys. A: Math. Gen., 20, 1251 (1987)
[21] Q. Bertrand, J. Pertinand, Dimension improvement in Dhar’s refutation of the Eden conjecture, Phys. Lett. A 382, 761-765.
[22] Kumar, A.; Dhar, D., Improved upper bounds on the asymptotic growth velocity of eden clusters, J. Stat. Phys., 180, 710-720 (2020) · Zbl 1446.62178
[23] Williams, T.; Bjerknes, R., Stochastic model for abnormal clone spread through epithelial basal layer, Nature, 236, 19-21 (1972)
[24] Wang, Z.; Bauch, C. T.; Bhattacharyya, S.; d’Onofrio, A.; Manfredi, P.; Perc, M.; Perra, N.; Salathé, M.; Zhao, D., Statistical physics of vaccination, Phys. Rep., 664, 1-113 (2016) · Zbl 1359.92111
[25] Das, A.; Dhar, A.; Goyal, S.; Kundu, A., Covid-19: analysis of a modified SEIR model, a comparison of different intervention strategies and projections for India (2020), arXiv:2005.11511 [physics, q-bio]
[26] Kordzakhia, G., The escape model on a homogeneous tree, Electron. Commun. Probab., 10, 113-124 (2005) · Zbl 1111.60075
[27] Tang, S.; Kordzakhia, G.; Lalley, S. P., Phase transition for the chase-escape model on 2D lattices (2018), arXiv:1807.08387 [cond-mat, q-bio]
[28] Durrett, R.; Junge, M.; Tang, S., Coexistence in chase-escape, Electron. Commun. Probab., 25 (2020), paper no. 22 · Zbl 1434.60285
[29] Kesten, H., The critical probability of bond percolation on the square lattice equals 1/2, Comm. Math. Phys., 74, 41-59 (1980) · Zbl 0441.60010
[30] Owen, M. R.; Lewis, M. A., How predation can slow, stop or reverse a prey invasion, Bull. Math. Biol., 63, 655-684 (2001) · Zbl 1323.92181
[31] Bordenave, C., Extinction probability and total progeny of predator-prey dynamics on infinite trees, Electron. J. Probab., 19 (2014), paper no. 20 · Zbl 1307.60115
[32] Beckman, E.; Cook, K.; Eikmeier, N.; Hernandez-Torres, S.; Junge, M., Chase-escape with death on trees (2020), arXiv:1909.01722 [Math]
[33] Grassberger, P.; de la Torre, A., Reggeon field theory (Schlögl’s first model) on a lattice: Monte Carlo calculations of critical behaviour, Ann. Physics, 122, 1979, 373 (1979)
[34] Grassberger, P., Critical percolation in high dimensions, Phys. Rev. E, 67, 2003, Article 036101 pp. (2003)
[35] Percolation critical exponents (2021), https://en.wikipedia.org
[36] Richardson, D., Random growth in a tesselation, Proc. Cambridge Philos. Soc., 74, 515-528 (1973) · Zbl 0295.62094
[37] Durrett, R.; Liggett, T. M., The shape of the limit set in the Richardson growth model, Ann. Probab., 9, 186-193 (1981) · Zbl 0457.60083
[38] Jensen, I., Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice, J. Phys. A: Math. Gen., 32, 5233-5249 (1999) · Zbl 0961.82016
[39] Plischke, M.; Rácz, Z., Active zone of growing clusters: Diffusion-limited aggregation and the eden model, Phys. Rev. Lett., 53, 415 (1984)
[40] Alm, S. E.; Deijfen, M., First passage percolation on \(\mathbb{Z}^2\): A simulation study, J. Stat. Phys., 161, 657-678 (2015) · Zbl 1332.82080
[41] Duminil-Copin, H.; Kozlowski, K. K.; Krachun, D.; Manolescu, I.; Oulamara, M., Rotational invariance in critical planar lattice models (2020), arXiv:2012.11672 [math.PR]
[42] Reis, Fabio D. A. Aarao, Depinning transitions in interface growth models, Braz. J. Phys., 33, 501-513 (2003)
[43] Derrida, B.; Retaux, M., The depinning transition in presence of disorder: A toy model, J. Stat. Phys., 156, 268-290 (2014) · Zbl 1312.82005
[44] Brunet, E.; Derrida, B.; Mueller, A. H.; Munier, S., Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts, Phys. Rev. E, 73, Article 056126 pp. (2006)
[45] Tomé, T.; Ziff, R. M., Critical behavior of the susceptible-infected-recovered model on a square lattice, Phys. Rev. E, 82, Article 051921 pp. (2010)
[46] Janssen, H. K., On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state, Z. Phys. B, 42, 151-154 (1981)
[47] Grassberger, P., On phase transitions in Schlögl’s second model, Z. Phys. B, 47, 365-374 (1982)
[48] de Souza, D. R.; Tomé, T., Stochastic lattice gas model describing the dynamics of the SIRS epidemic process, Physica A, 389, 1142 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.