×

Lie-Rinehart algebras \(\simeq\) acyclic Lie \(\infty \)-algebroids. (English) Zbl 1482.18016

The article under review generalizes to Lie-Rinehart algebras, earlier work by the first author with S. Lavau and T. Strobl [C. Laurent-Gengoux et al., Doc. Math. 25, 1571–1652 (2020; Zbl 1453.53033)], where the homotopy class of an \(L_{\infty}\)-algebroid was assigned to a singular foliation. In fact, the current paper improves this result, in the sense that the length of the \(L_{\infty}\)-algebroid is allowed to be infinite. Moreover, the construction given in this work provides a complex which allows the computation of the Tor functor.

MSC:

18N99 Higher categories and homotopical algebra
53C12 Foliations (differential geometric aspects)
55U35 Abstract and axiomatic homotopy theory in algebraic topology
16S38 Rings arising from noncommutative algebraic geometry
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
53D17 Poisson manifolds; Poisson groupoids and algebroids

Citations:

Zbl 1453.53033

References:

[1] Androulidakis, Iakovos; Zambon, Marco, Smoothness of holonomy covers for singular foliations and essential isotropy, Math. Z., 275, 921-951 (2013) · Zbl 1292.57020
[2] Androulidakis, Iakovos; Zambon, Marco, Integration of singular algebroids (2018), arXiv · Zbl 1292.57020
[3] Bonavolontà, Giuseppe; Poncin, Norbert, On the category of Lie n-algebroids, J. Geom. Phys., 73, 70-90 (2013) · Zbl 1332.58005
[4] Campos, Ricardo, BV formality, Adv. Math., 306, 807-851 (2017) · Zbl 1386.18034
[5] Campos, Ricardo, Homotopy equivalence of shifted cotangent bundles, J. Lie Theory, 29, 3, 629-646 (2019) · Zbl 1442.58003
[6] Cattaneo, Alberto S.; Felder, Giovanni, Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model, Lett. Math. Phys., 69, 157-175 (2004) · Zbl 1065.53063
[7] Cerveau, Dominique, Distributions involutives singulières, Ann. Inst. Fourier (Grenoble), 29, 3 (1979), xii, 261-294 · Zbl 0419.58002
[8] Chen, Zhuo; Stiénon, Mathieu; Xu, Ping, From Atiyah classes to homotopy Leibniz algebras, Commun. Math. Phys., 341, 309-349 (2016) · Zbl 1395.53090
[9] Dazord, Pierre, Feuilletages à singularités, Indag. Math., 47, 21-39 (1985) · Zbl 0584.57016
[10] Debord, Claire, Holonomy groupoids of singular foliations, J. Differ. Geom., 58, 467-500 (07 2001) · Zbl 1034.58017
[11] Eisenbud, David, Commutative Algebra. With a View Toward Algebraic Geometry, vol. 150 (1995), Springer-Verlag: Springer-Verlag Berlin · Zbl 0819.13001
[12] Frégier, Yaël; Juarez-Ojeda, Rigel A., Homotopy theory of singular foliations (2018)
[13] Frölicher, Alfred; Nijenhuis, Albert, Theory of vector-valued differential forms. I: Derivations in the graded ring of differential forms, Ned. Akad. Wet., Proc., Ser. A, 59, 338-350, 351-359 (1956) · Zbl 0079.37502
[14] Andreas Gathmann, Commutative Algebra, Class Notes TU Kaiserslautern 2013/14.
[15] Hartshorne, Robin, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52 (1977), Springer: Springer New York, NY · Zbl 0367.14001
[16] Huebschmann, Johannes, Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Ann. Inst. Fourier, 48, 425-440 (1998) · Zbl 0973.17027
[17] Huebschmann, Johannes, Lie-Rinehart Algebras, Descent, and Quantization, Fields Inst. Commun., vol. 43 (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1096.17006
[18] Kapranov, Maxim, Rozansky-Witten invariants via Atiyah classes, Compos. Math., 115, 71-113 (1999) · Zbl 0993.53026
[19] Kassel, Christian, Quantum Groups, Graduate Texts in Mathematics, vol. 155 (2012), Springer · Zbl 0808.17003
[20] Kjeseth, Lars, A homotopy Lie-Rinehart resolution and classical BRST cohomology, Homol. Homotopy Appl., 3, 165-192 (2001) · Zbl 1054.17016
[21] Kjeseth, Lars, Homotopy Rinehart cohomology of homotopy Lie-Rinehart pairs, Homol. Homotopy Appl., 3, 139-163 (2001) · Zbl 1005.17016
[22] Kolář, Ivan; Michor, Peter W.; Slovák, Jan, Natural Operations in Differential Geometry (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0782.53013
[23] Kontsevich, Maxim, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66, 157-216 (2003) · Zbl 1058.53065
[24] Kosmann-Schwarzbach, Yvette, Derived brackets, Lett. Math. Phys., 69, 61-87 (2004) · Zbl 1055.17016
[25] Lada, Tom; Stasheff, Jim, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys., 32, 1087-1103 (1993) · Zbl 0824.17024
[26] Laurent-Gengoux, Camille; Lavau, Sylvain; Strobl, Thomas, The universal Lie ∞-algebroid of a singular foliation, Doc. Math., 25, 1571-1652 (2020) · Zbl 1453.53033
[27] Laurent-Gengoux, Camille; Stiénon, Mathieu; Xu, Ping, Poincaré-Birkhoff-Witt isomorphisms and Kapranov dg-manifolds, Adv. Math., 387 (2021) · Zbl 1468.58004
[28] Lavau, Sylvain, Lie ∞-algebroids and singular foliations (2017), Ph-D
[29] Mackenzie, Kirill C. H., General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, vol. 213 (2005), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1078.58011
[30] Matsumura, Hideyuki, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics (1989), Cambridge University Press: Cambridge University Press Cambridge, translated by M. Reid · Zbl 0666.13002
[31] May, Jon Peter, Cohen-Macauley and regular local rings, On-line 06-2021
[32] Sati, Hisham; Schreiber, Urs; Stasheff, Jim, Twisted differential string and fivebrane structures, Commun. Math. Phys., 315, 1, 169-213 (2012) · Zbl 1252.81110
[33] Ševera, Pavol, Some title containing the words “homotopy” and “symplectic”, e.g. this one (2001) · Zbl 1102.58010
[34] Ševera, Pavol; Širaň, Michal, Integration of differential graded manifolds, Int. Math. Res. Not., 20, 6769-6814 (2020) · Zbl 1468.58002
[35] Tseng, Hsian-Hua; Zhu, Chenchang, Integrating Lie algebroids via stacks, Compos. Math., 142, 251-270 (2006) · Zbl 1111.58019
[36] Villatoro, Joel, On sheaves of Lie-Rinehart algebras (2020)
[37] Vitagliano, Luca, On the strong homotopy associative algebra of a foliation, Commun. Contemp. Math., 17 (2015) · Zbl 1316.53025
[38] Vitagliano, Luca, Representations of homotopy Lie-Rinehart algebras, Math. Proc. Camb. Philos. Soc., 158, 155-191 (2015) · Zbl 1371.17018
[39] Voronov, Theodore, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra, 202, 133-153 (2005) · Zbl 1086.17012
[40] Voronov, Theodore, Q-manifolds and higher analogs of Lie algebroids, (XXIX Workshop on Geometric Methods in Physics. XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., vol. 1307 (2010)), 191-202 · Zbl 1260.53133
[41] Weibel, Charles, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics (2014), Cambridge University Press · Zbl 0797.18001
[42] Zambon, Marco, Holonomy transformations for Lie subalgebroids (2018)
[43] Zambon, Marco; Androulidakis, Iakovos, Singular subalgebroids (2018) · Zbl 1352.53021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.