×

Recollements induced by monomorphism categories. (English) Zbl 1490.18016

Summary: Let \(R\) be any associative ring, \(n\) a positive integer and \(\mathcal{X}\) a full subcategory of the category of \(R\)-modules. The monomorphism category \(\mathcal{S}_n(\mathcal{X})\) of \(\mathcal{X}\) consists of all the objects \(( X_i, \varphi_i)\), where \(X_i \in \mathcal{X}\) for each \(1 \leqslant i \leqslant n\), \(\varphi_i : X_i \to X_{i + 1}\) is a monomorphism and \(\text{Coker} \varphi_i \in \mathcal{X}\) for each \(1 \leqslant i \leqslant n - 1\), which was introduced by Zhang. We mainly prove that there exists a recollement of the stable category \(\underline{\mathcal{S}_{n + 1} ( \mathcal{X} )}\) relative to the ones \(\underline{\mathcal{S}_n ( \mathcal{X} )}\) and \(\underline{\mathcal{X}}\) for any Frobenius subcategory \(\mathcal{X}\) and any positive integer \(n\). To realize this purpose, we construct a recollement in the context of comma categories. As its application, it is shown that there are recollements induced by the monomorphism category of Gorenstein projective modules (resp., Ding projective modules, Gorenstein AC-projective modules, Gorenstein flat-cotorsion modules, and Gorenstein flat modules) and a hereditary Hovey triple in the category of \(R\)-modules, respectively.

MSC:

18G65 Stable module categories
18G25 Relative homological algebra, projective classes (category-theoretic aspects)
16D40 Free, projective, and flat modules and ideals in associative algebras
16E05 Syzygies, resolutions, complexes in associative algebras
Full Text: DOI

References:

[1] Auslander, M.; Reiten, I.; Smalø, S. O., Representation Theory of Artin Algebras (1995), Cambridge Univ. Press · Zbl 0834.16001
[2] Beilinson, A. A.; Bernstein, J.; Deligne, P., Faisceaux pervers, Astérisque, 100 (1982) · Zbl 0536.14011
[3] Birkhoff, G., Subgroups of Abelian groups, Proc. Lond. Math. Soc., 38, 2, 385-401 (1934) · Zbl 0010.34304
[4] Bravo, D.; Gillespie, J.; Hovey, M., The stable module category of a general ring (2014)
[5] Chen, X. W., The stable monomorphism category of a Frobenius category, Math. Res. Lett., 18, 125-137 (2011) · Zbl 1276.18012
[6] Christensen, L. W.; Estrada, S.; Thompson, P., Homotopy categories of totally acyclic complexes with applications to the flat-cotorsion theory, (Categorical, Homological and Combinatorial Methods in Algebra. Categorical, Homological and Combinatorial Methods in Algebra, Contemp. Math., vol. 751 (2020)), 99-118 · Zbl 1468.16009
[7] Ding, N. Q.; Li, Y. L.; Mao, L. X., Strongly Gorenstein flat modules, J. Aust. Math. Soc., 86, 323-338 (2009) · Zbl 1200.16010
[8] Enochs, E. E.; Jenda, O. M.G., Gorenstein injective and projective modules, Math. Z., 220, 611-633 (1995) · Zbl 0845.16005
[9] Enochs, E. E.; Jenda, O. M.G., Relative Homological Algebra, de Gruyter Exp. Math., vol. 30 (2000), de Gruyter: de Gruyter Berlin · Zbl 0952.13001
[10] Fossum, R. M.; Griffith, P.; Reiten, I., Trivial Extensions of Abelian Categories, Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory, Lect. Notes in Math., vol. 456 (1975), Springer-Verlag: Springer-Verlag Berlin · Zbl 0303.18006
[11] Gao, N.; Ma, J.; Liu, X. Y., RSS equivalences over a class of Morita rings, J. Algebra, 573, 336-363 (2021) · Zbl 1471.16006
[12] Gillespie, J., Model structures on modules over Ding-Chen rings, Homol. Homotopy Appl., 12, 61-73 (2010) · Zbl 1231.16005
[13] Gillespie, J., Hereditary Abelian model categories, Bull. Lond. Math. Soc., 48, 895-922 (2016) · Zbl 1372.18001
[14] Happel, D., Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Mathematical Society Lecture Note Ser., vol. 119 (1988), Cambridge Univ. Press · Zbl 0635.16017
[15] Hovey, M., Model Categories, Mathematical Surveys and Monographs, vol. 63 (1999), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0909.55001
[16] Hovey, M., Cotorsion pairs, model category structures, and representation theory, Math. Z., 241, 553-592 (2002) · Zbl 1016.55010
[17] Hu, W.; Luo, X. H.; Xiong, B. L.; Zhou, G. D., Gorenstein projective bimodules via monomorphism categories and filtration categories, J. Pure Appl. Algebra, 223, 1014-1039 (2019) · Zbl 1399.18005
[18] Iyama, O.; Kato, K.; Miyachi, J.-I., Recollement on homotopy categories and Cohen-Macaulay modules, J. K-Theory, 8, 507-541 (2011) · Zbl 1251.18008
[19] Kussin, D.; Lenzing, H.; Meltzer, H., Nilpotent operators and weighted projective lines, J. Reine Angew. Math., 685, 6, 33-71 (2010) · Zbl 1293.16008
[20] Krause, H., Derived categories, resolutions, and Brown representability, (Interactions Between Homotopy Theory and Algebra. Interactions Between Homotopy Theory and Algebra, Contemp. Math., vol. 436 (2007)), 101-139 · Zbl 1132.18005
[21] Li, H. H.; Zheng, Y. F.; Hu, J. S.; Zhu, H. Y., Gorenstein projective modules and recollements over triangular matrix rings, Commun. Algebra, 48, 4932-4947 (2020) · Zbl 1443.18007
[22] Liu, P.; Lu, M., Recollements of singularity categories and monomorphism categories, Commun. Algebra, 43, 2443-2456 (2015) · Zbl 1330.18016
[23] Luo, X. H.; Zhang, P., Monic representations and Gorenstein-projective modules, Pac. J. Math., 264, 1, 163-194 (2013) · Zbl 1317.16010
[24] Luo, X. H.; Zhang, P., Separated monic representations I: Gorenstein-projective modules, J. Algebra, 479, 1-34 (2017) · Zbl 1405.16022
[25] Miyachi, J.-I., Localization of triangulated categories and derived categories, J. Algebra, 141, 463-483 (1991) · Zbl 0739.18006
[26] Ringel, C. M.; Schmidmeier, M., Submodule categories of wild representation type, J. Pure Appl. Algebra, 205, 2, 412-422 (2006) · Zbl 1147.16019
[27] Ringel, C. M.; Schmidmeier, M., The Auslander-Reiten translation in submodule categories, Trans. Am. Math. Soc., 360, 2, 691-716 (2008) · Zbl 1154.16011
[28] Ringel, C. M.; Schmidmeier, M., Invariant subspaces of nilpotent linear operators I, J. Reine Angew. Math., 614, 1-52 (2008) · Zbl 1145.16005
[29] Simson, D., Representation types of the category of subprojective representations of a finite poset over \(K [t] /( t^m)\) and a solution of a Birkhoff type problem, J. Algebra, 311, 1-30 (2007) · Zbl 1123.16010
[30] Simson, D., Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators, J. Algebra, 424, 254-293 (2015) · Zbl 1312.16011
[31] Simson, D., Representation-finite Birkhoff type problems for nilpotent linear operator, J. Pure Appl. Algebra, 222, 2181-2198 (2018) · Zbl 1418.16008
[32] Xiong, B. L.; Zhang, P.; Zhang, Y. H., Bimodule monomorphism category and RSS equivalences via cotilting modules, J. Algebra, 503, 21-55 (2018) · Zbl 1440.16017
[33] Zhang, P., Monomorphism categories, cotilting theory, and Gorenstein-projective modules, J. Algebra, 339, 181-202 (2011) · Zbl 1275.16013
[34] Zhang, P., Gorenstein-projective modules and symmetric recollements, J. Algebra, 388, 65-80 (2013) · Zbl 1351.16012
[35] Zhang, P.; Xiong, B. L., Separated monic representations II: Frobenius subcategories and RSS equivalences, Trans. Am. Math. Soc., 372, 2, 981-1021 (2019) · Zbl 1453.16012
[36] Zhang, P., Triangulated Categories and Derived Categories (2015), Science Press: Science Press Beijing
[37] Zhang, P.; Zhu, L., Objective triangle functors in adjoint pairs, Algebra Colloq., 24, 2, 639-646 (2017) · Zbl 1387.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.