×

On \(n\)-absorbing ideals of locally divided commutative rings. (English) Zbl 1483.13009

All rings considered in this paper are commutative with identity.
Recall from [D. F. Anderson and A. Badawi, Commun. Algebra 39, No. 5, 1646–1672 (2011; Zbl 1232.13001)], that if \( n\in \mathbb{N}\) and \(I\) is an ideal of a ring \(R\) then \(I\) is said to be an \(n\)-absorbing ideal of \(R\) if for any \(x_{1},\dots,x_{n+1}\in R\) such that \( x_{1}\dots x_{n+1}\in R,\) there are \(n\) of the \(x_{i}\)’s whose product is in \( I. \) The ideal \(I\) is said to be a strongly \(n\)-absorbing ideal of \(R\) if for any ideals \(I_{1},\dots,I_{n+1}\) of \(R\) such that \(I_{1}\dots I_{n+1}\subset I,\) there are \(n\) of the \(I_{i}\)’s whose product is contained in \(I.\) Two conjectures araised from these definitions:
Conjecture 1. Given \(n\in \mathbb{N},\) every \(n\)-absorbing ideal of \(R\) is also a strongly \(n\)-absorbing ideal of \(R.\)
Conjecture 2. Given \(n\in \mathbb{N},\) if \(I\) is an \(n\)-absorbing ideal of \(R\) then \(I[X]\) is an \(n\)-absorbing ideal of \(R[X].\)
In the paper under review the author proves that these two conjectures are true for any \(n\in \mathbb{N},\) when \(R\) is a locally divided ring or \(R\) is a \(2\)-AB ring. Moreover, he shows that for a ring \(R,\) there exists \(n\) such that every ideal of \(R\) is \(n\)-absorbing if and only if \(R\) is a strongly Laskerian ring with Krull dimension zero.
The author studies also finite absorbing rings. Recall that a ring \(R\) is finite absorbing if each ideal of \(R\) is an \(n\)-absorbing for a certain \( n\in \mathbb{N}.\) He proves that if \(R\) is a locally divided ring then \(R\) is finite absorbing if and only if \(R\) is strongly Laskerian.
Finally, finite absorbing rings on idealization of modules over rings are investigated. More precisely, and among other results, the author shows that for an integral domain \(R\) and a divisible \(R\)-module \(M,\) the ring \(R(+)M\) is finite absorbing if and only if \(M\) is a torsion free semisimple module and \(R\) is finite absorbing.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations
13A05 Divisibility and factorizations in commutative rings
13F25 Formal power series rings
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
13J05 Power series rings

Citations:

Zbl 1232.13001
Full Text: DOI

References:

[1] Ahmed, M. T.; Dumitrescu, T.; Khadam, M. A., Commutative rings with absorbing factorization, Commun. Algebra, 48, 12, 5067-5075 (2020) · Zbl 1443.13002
[2] Anderson, D. D., Some remarks on multiplication ideals, Math. Jpn., 25, 4, 463-469 (1980) · Zbl 0446.13001
[3] Anderson, D. D.; Winders, M., Idealization of a module, J. Commut. Algebra, 1, 1, 3-56 (2009) · Zbl 1194.13002
[4] Anderson, D. D.; Mahaney, L. A., Commutative rings in which every ideal is a product of primary ideals, J. Algebra, 106, 528-535 (1987) · Zbl 0607.13004
[5] Anderson, D. F.; Badawi, A., On n-absorbing ideals of commutative rings, Commun. Algebra, 39, 5, 1646-1672 (2011) · Zbl 1232.13001
[6] Anderson, D. F.; Dobbs, D. E., Pair of rings with the same prime ideals, Can. J. Math., 32, 2, 362-384 (1980) · Zbl 0406.13001
[7] Armeanu, I., On a class of Laskerian rings, Rev. Roum. Math. Pures Appl., 22, 8, 1033-1036 (1977) · Zbl 0369.13011
[8] Arnold, J., Krull dimension in power series rings, Trans. Am. Math. Soc., 177, 299-304 (1973) · Zbl 0262.13007
[9] Atiyah, M. F.; Macdonald, I. G., Introduction to Commutative Algebra (1969), Addison-Wesley · Zbl 0175.03601
[10] Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75, 3, 417-429 (2007) · Zbl 1120.13004
[11] Badawi, A., n-Absorbing ideals of commutative rings and recent progress on three conjectures: a survey, (Fontana, M.; Frisch, S.; Glaz, S.; Tartarone, F.; Zanardo, P., Rings, Polynomials, and Modules (2017), Springer), 33-52 · Zbl 1390.13005
[12] Badawi, A.; Dobbs, D. E., On locally divided rings and going-down rings, Commun. Algebra, 29, 7, 2805-2825 (2001) · Zbl 1104.13301
[13] Barucci, V.; Fontana, M., When are D+M rings Laskerian?, Rend. Circ. Mat. Palermo (2), XXXI, 125-136 (1982) · Zbl 0492.13002
[14] Bastida, E.; Gilmer, R., Overrings and divisorial ideals of rings of the form D+M, Mich. Math. J., 20, 1, 79-95 (1973) · Zbl 0239.13001
[15] Behboodi, M.; Karamzadeh, O. A.S.; Koohy, H., Modules whose certain submodules are prime, Vietnam J. Math., 32, 3, 303-317 (2004) · Zbl 1081.16008
[16] Bennis, D.; Fahid, B., Rings in which every 2-absorbing ideal is prime, Beitr. Algebra Geom., 59, 2, 391-396 (2018) · Zbl 1415.13005
[17] Bourbaki, N., Commutative Algebra (1989), Springer, Chapters 1-7 · Zbl 0666.13001
[18] Brewer, J.; Rutter, E.; Watkins, J., Coherence and weak global dimension of \(R [[X]]\) when R is von Neumann regular, J. Algebra, 46, 278-289 (1977) · Zbl 0393.13004
[19] Cahen, P. J.; Fontana, M.; Frisch, S.; Glaz, S., Open problems in commutative ring theory, (Commutative Algebra (2014), Springer: Springer New York), 353-375 · Zbl 1327.13002
[20] Choi, H.; Walker, A., The radical of an n-absorbing ideal, J. Commut. Algebra, 12, 2, 171-177 (2020) · Zbl 1440.13009
[21] Choi, H.; Walker, A., n-Absorbing monomial ideals in polynomial rings, Int. Electron. J. Algebra, 26, 204-223 (2019) · Zbl 1416.13001
[22] Darani, A. Y.; Soheilnia, F., On n-absorbing submodules, Math. Commun., 17, 547-557 (2012) · Zbl 1262.13004
[23] Dobbs, D. E., Divided rings and going-down, and pseudo-valuation domains, Pac. J. Math., 67, 2, 353-363 (1976) · Zbl 0326.13002
[24] Dobbs, D. E., Coherence, ascent of going-down, and pseudo-valuation domains, Houst. J. Math., 4, 4, 551-567 (1978) · Zbl 0388.13002
[25] Donadze, G., Anderson-Badawi conjecture for commutative algebras over infinite fields, Indian J. Pure Appl. Math., 47, 4, 691-696 (December 2016) · Zbl 1368.13002
[26] Donadze, G., A proof of Anderson-Badawi \(r a d ( I )^n \subseteq I\) formula for n-absorbing ideals, Proc. Math. Sci., 128, 6 (2018) · Zbl 1388.13005
[27] Fan, Y.; Geroldinger, A.; Kainrath, F.; Tringali, S., Arithmetic of commutative semigroups with a focus on semigroups of ideals and modules, J. Algebra Appl., 16, 12, Article 1750234 pp. (2017) · Zbl 1441.20041
[28] Fields, D. E., Zero divisors and nilpotent elements in power series rings, Proc. Am. Math. Soc., 27, 3, 427-433 (1971) · Zbl 0219.13023
[29] Gilmer, R., Rings in which semiprimary ideals are primary, Pac. J. Math., 12, 4, 1273-1276 (1962) · Zbl 0118.27201
[30] Gilmer, R., Multiplicative Ideal Theory (1972), Marcel Dekker: Marcel Dekker New York · Zbl 0248.13001
[31] Gilmer, R., On polynomial and power series rings over a commutative ring, Rocky Mt. J. Math., 5, 2, 157-175 (1975) · Zbl 0297.13017
[32] Gilmer, R.; Heinzer, W., Laskerian property, power series rings and Noetherian spectra, Proc. Am. Math. Soc., 79, 1, 13-16 (1980) · Zbl 0447.13009
[33] Gilmer, R. W.; Mott, J. L., Multiplication rings as rings in which ideals with prime radical are primary, Trans. Am. Math. Soc., 114, 40-52 (1965) · Zbl 0136.02402
[34] Hedstrom, J. R.; Houston, E., Pseudo-valuation domains, Pac. J. Math., 75, 1, 137-147 (1978) · Zbl 0368.13002
[35] Houston, E.; Lucas, T.; Viswanathan, T., Primary decomposition of divisorial ideals in Mori domains, J. Algebra, 117, 327-342 (1988) · Zbl 0675.13002
[36] Issoual, M.; Mahdou, N., Rings in which every 2-absorbing ideal is prime, (Shahid, M.; Ashraf, M.; Al-Solamy, F.; Kimura, Y.; Vilcu, G., Differential Geometry, Algebra, and Analysis, ICDGAA 2016. Differential Geometry, Algebra, and Analysis, ICDGAA 2016, Springer Proceedings in Mathematics & Statistics, vol. 327 (2020), Springer: Springer Singapore) · Zbl 1468.13006
[37] Jensen, C., Arithmetical rings, Acta Math. Acad. Sci. Hung., 17, 115-123 (1966) · Zbl 0141.03502
[38] Kaplansky, I., Commutative Rings (1970), Allyn and Bacon: Allyn and Bacon Boston · Zbl 0203.34601
[39] Laradji, A., On n-absorbing rings and ideals, Colloq. Math., 147, 265-273 (2017) · Zbl 1370.13002
[40] Larsen, M. D.; McCarthy, P. J., Multiplicative Theory of Ideals (1971), Academic Press: Academic Press New York, London · Zbl 0237.13002
[41] McCarthy, P. J., The ring of polynomials over a von Neumann regular ring, Proc. Am. Math. Soc., 39, 253-254 (1973) · Zbl 0267.13008
[42] Matsumura, H., Commutative Ring Theory (1986), Cambridge University Press · Zbl 0603.13001
[43] Mukhtar, M.; Ahmed, M. T.; Dumitrescu, T., Commutative rings with two-absorbing factorization, Commun. Algebra, 46, 3, 970-978 (2018) · Zbl 1440.13017
[44] Nagata, M., Local Rings (1962), Interscience · Zbl 0123.03402
[45] Nasehpour, P., On the Anderson-Badawi \(\omega_{R [ X ]}(I [X]) = \omega_R(I)\) conjecture, Arch. Math., 52, 2, 71-78 (2016) · Zbl 1374.13007
[46] Radu, N., Sur les anneaux cohérents Laskeriens, Rev. Roum. Math. Pures Appl., 11, 865-867 (1966) · Zbl 0142.00701
[47] Smach, S.; Hizem, S., On Anderson-Badawi conjectures, Beitr. Algebra Geom., 58, 4, 775-785 (2017) · Zbl 1390.13011
[48] Smach, S.; Hizem, S., 2-AB rings and 2-absorbing rings, Beitr. Algebra Geom., 61, 2, 209-218 (2020) · Zbl 1434.13007
[49] Zariski, O.; Samuel, P., Commutative Algebra, vol. I, The University Series in Higher Mathematics (1958), Van Nostrand: Van Nostrand Princeton, NJ · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.