×

Residual entropy of twisted and helical ice nanotubes. (English) Zbl 07458618

Summary: To study the properties of ice nanotubes, the exact statistics of proton disorder are of interest. In this paper, a new version of the transfer-matrix method is applied to compute the number of defect-free configurations in twisted and helical ice nanotubes. For the calculation of the transfer matrices themselves, this new version of the transfer-matrix method uses small conditional matrices of size 2 x 2 or 4 x 4. For different types of nanotubes, the number of proton configurations in the unit cells of different lengths and the asymptotic values of the residual entropy are presented. For wide tubes, the convergence of the residual entropy to the entropy of the well-known two-dimensional ice model is discussed.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Kolesnikov, A.; Zanotti, J.-M.; Loong, C.-K.; Thiyagarajan, P.; Moravsky, A.; Loutfy, R.; Burnham, C., Phys. Rev. Lett., 93, Article 035503 pp. (2004)
[2] Maniwa, Y.; Kataura, H.; Abe, M.; Udaka, A.; Suzuki, S.; Achiba, Y.; Kira, H.; Matsuda, K.; Kadowaki, H.; Okabe, Y., Chem. Phys. Lett., 401, 534 (2005)
[3] Byl, O.; Liu, J.-C.; Wang, Y.; Yim, W.-L.; Johnson, J. K.; Yates, J. T., J. Am. Chem. Soc., 128, 12090 (2006)
[4] Sekhaneh, W.; Kotecha, M.; Dettlaff-Weglikowska, U.; Veeman, W. S., Chem. Phys. Lett., 428, 143 (2006)
[5] Koga, K.; Parra, R. D.; Tanaka, H.; Zeng, X. C., J. Chem. Phys., 113, 5037 (2000)
[6] Koga, K.; Gao, G. T.; Tanaka, H.; Zeng, X. C., Nature, 412, 802 (2001)
[7] Bai, J.; Wang, J.; Zeng, X. C., Proc. Natl. Acad. Sci., 103, 19664 (2006)
[8] Bernal, J. D.; Fowler, R. H., J. Chem. Phys., 1, 515 (1933)
[9] Pauling, L., J. Am. Chem. Soc., 57, 2680 (1935)
[10] McDonald, S.; Ojamae, L.; Singer, S. J., J. Phys. Chem., 102, 2824 (1998)
[11] Kirov, M. V., Physica A, 388, 1431 (2009)
[12] Kramers, H. A.; Wannier, G. H., Phys. Rev., 60, 252 (1941) · Zbl 0027.28505
[13] Tokmachev, A. M.; Dronskowski, R., J. Comput. Chem., 32, 99 (2011)
[14] Kirov, M. V., Physica A, 392, 680 (2013)
[15] Kirov, M. V., J. Phys. Chem. A, 124, 4463 (2020)
[16] Zangi, R.; Mark, A. E., Phys. Rev. Lett., 91, Article 025502 pp. (2003)
[17] Koga, K.; Tanaka, H., J. Chem. Phys., 122, Article 104711 pp. (2005)
[18] Ford, W., (Eigenvalues and Eigenvectors. Eigenvalues and Eigenvectors, Numerical Linear Algebra with Applications (2015), Academic Press: Academic Press Boston), 79-102
[19] Ferreyra, M. V.; Grigera, S. A., Phys. Rev. E, 98, Article 042146 pp. (2018)
[20] Lieb, E. H., Phys. Rev., 162, 162 (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.