×

Semidistributivity and whitman property in implication zroupoids. (English) Zbl 1491.06037

Summary: In 2012, the second author [Sci. Math. Jpn. 75, No. 1, 21–50 (2012; Zbl 1279.06009)] introduced, and initiated the investigations into, the variety \(\mathcal{I}\) of implication zroupoids that generalize De Morgan algebras and \(\vee\)-semilattices with 0. An algebra \(\mathbf{A}=\langle A,\rightarrow,0\rangle\), where \(\rightarrow\) is binary and 0 is a constant, is called an implication zroupoid (\(\mathcal{I}\)-zroupoid, for short) if A satisfies: \((x\rightarrow y)\rightarrow z\approx [(z'\rightarrow x)\rightarrow (y\rightarrow z)']'\), where \(x':=x\rightarrow 0\), and \(0''\approx 0\). Let \(\mathcal{I}\) denote the variety of implication zroupoids and \(\mathbf{A}\in\mathcal{I}\). For \(x,y\in\mathbf{A}\), let \(x\wedge y:=(x\rightarrow y')'\) and \(x\vee y:=((x'\wedge y')'\). In an earlier paper, we had proved that if \(\mathbf{A}\in\mathcal{I}\), then the algebra \(\mathbf{A}_{mj}=\langle A,\vee,\wedge\rangle\) is a bisemigroup. The purpose of this paper is two-fold: First, we generalize the notion of semidistributivity from lattices to bisemigroups and prove that, for every \(\mathbf{A}\in\mathcal{I}\), the bisemigroup \(\mathbf{A}_{mj}\) is semidistributive. Secondly, we generalize the Whitman Property from lattices to bisemigroups and prove that the subvariety \(\mathcal{MEJ}\) of \(\mathcal{I}\), defined by the identity: \(x\wedge y \approx x\vee y\), satisfies the Whitman Property. We conclude the paper with two open problems.

MSC:

06D75 Other generalizations of distributive lattices
03G25 Other algebras related to logic
06D30 De Morgan algebras, Łukasiewicz algebras (lattice-theoretic aspects)
08B05 Equational logic, Mal’tsev conditions
08B15 Lattices of varieties

Citations:

Zbl 1279.06009

Software:

Mace4; Prover9

References:

[1] Balbes, R.—Dwinger, P.: Distributive Lattices, University of Missouri Press, Columbia, 1974. · Zbl 0321.06012
[2] Bernstein, B. A.: A set of four postulates for Boolean algebras in terms of the implicative operation, Trans. Amer. Math. Soc. 36 (1934), 876-884. · Zbl 0010.24103
[3] Birkhoff, G.: Lattice Theory. 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, 1948. · Zbl 0126.03801
[4] Burris, S.—c, H. P.: A Course in Universal Algebra, Springer-Verlag, New York, 1981. The free version (2012) is available online as a PDF file at math.uwaterloo.ca/\( \sim\) snburris.
[5] c, J. M.—Sankappanavar, H. P.: Order in implication zroupoids, Studia Logica 104 (2016), 417-453. · Zbl 1392.06011
[6] Cornejo, J. M.—Sankappanavar, H. P.: Semisimple varieties of implication zroupoids, Soft Computing 20 (2016), 3139-3151. · Zbl 1373.06015
[7] Cornejo, J. M.—Sankappanavar, H. P.: On implicator groupoids, Algebra Universalis 77 (2017), 125-146. · Zbl 1421.06002
[8] Cornejo, J. M.—Sankappanavar, H. P.: On derived algebras and subvarieties of implication zroupoids, Soft Computing 21 (2017), 6963-6982. · Zbl 1381.06004
[9] Cornejo, J. M.—Sankappanavar, H. P.: Symmetric implication zroupoids and identities of Bol-Moufang type, Soft Computing 22 (2018), 4319-4333. · Zbl 1398.06018
[10] Cornejo, J. M.—Sankappanavar, H. P.: Implication zroupoids and identities of associative type, Quasigr. Relat. Syst. 26 (2018), 13-34. · Zbl 1403.06016
[11] Cornejo, J. M.—Sankappanavar, H. P.: Symmetric implication zroupoids and weak associative identities, Soft Computing 23 (2019), 6797-6812. · Zbl 1418.06011
[12] Cornejo, J. M.—Sankappanavar, H. P.: Implication zroupoids and Birkhoff systems, J. Algebr. Hyperstrucres Log. Algebr., Published Online: 20 May 2021, 12 pages.
[13] Cornejo, J. M.—Sankappanavar, H. P.: Varieties of Implication zroupoids I, preprint (2020).
[14] Day, A.: Splitting lattices generate all lattices, Algebra Universalis 7 (1977), 163-169. · Zbl 0381.06010
[15] Freese, R.—Ježek, J.—Nation, J. B.: Free Lattices, Math. Surv. Monogr. 42, American Mathematical Society, 1995. · Zbl 0839.06005
[16] Gusev, S. V.—Sankappanavar, H. P.—Vernikov, B. M.: Implication semigroups, Order 37 (2020), 271-277. · Zbl 1481.20198
[17] Johnston-Thom, K. G.—Jones, P. R.: Semidistributive inverse semigroups, J. Austral. Math. Soc. 71 (2001), 37-51. · Zbl 0991.20045
[18] Jónsson, B.: Sublattices of a free lattice, Canad. J. Math. 13 (1961), 256-264. · Zbl 0132.26201
[19] Jónsson, B.-KIEFER, J. E.: Finite sublattices of a free lattice, Canad. J. Math. 14 (1962), 487-497. · Zbl 0107.25202
[20] Mccune, W.: Prover9 and Mace4, (2005-2010). http://www.cs.unm.edu/mccune/prover9/.
[21] Papert, D.: Congruence relations in semilattices, J. Lond. Math. Soc. s1-39 (1964), 723-729. · Zbl 0126.03802
[22] Płonka, J.: On distributive quasilattices, Fund. Math. 60 (1967), 91-200. · Zbl 0154.00709
[23] Rasiowa, H.: An Algebraic Approach to Non-classical Logics, North-Holland, Amsterdam, 1974. · Zbl 0299.02069
[24] Sankappanavar, H. P.: De Morgan algebras: new perspectives and applications, Sci. Math. Jpn. 75 (2012), 21-50. · Zbl 1279.06009
[25] Shiryaev, V. M.: Semigroups with ∧-semidistributive subsemigroup lattice, Semigroup Forum 31 (1985), 47-68. · Zbl 0549.20040
[26] Whitman, P.: Free lattices, Ann. of Math. 42 (1941), 325-330. · JFM 67.0085.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.